CONTRIBUTION TO THE AUTOMATION
 OF THE GALGULATIONS INVOLVING THE FOREST INVENTORY WITH THE AID OF AN OFFICE COMPUTER

by
\section*{R. Goossens}

1. Problem

O.D.C. 58

Although the use of computers in sylvicultural research has become a reality, a general spread of these techniques will only be possible, when certain conditions are fulfilled. In many cases such means were used, either because a computer center was available, or because certain public or private institutions could be appealed to and were willing to work out each year a given number of problems. In case neither of these possibilitics exist, the only solution is the buying or the hiring of a computer. In the former case sufficient and permanent computing work is required, whereas in the latter all calculations have to be effected within an as short as possible space of time. In both cases however considerable investments, adequate space and a specialised staff are required.

To a certain degree the problems described above may be solved by the use of smaller electronic calculators or office computers, which recently evolved considerably and the future development and applicability of which are scarcely be foreseen nowadays.

Of course we treat here of important aids which for the moment are not able to replace the existing and more extensive computers, especially not when more complicated and ample problems are dealt with.

The contribution below only aims at showing which are the possibilities of an office computer in forest inventory and which contingent simplifications have to be made. For this purpose an office computer OLIVETTI P 203 was used.

2. Hardware

The OLIVETTI P $203\left(^{\circ}\right)$ is an electronic calculator, the program being transfered in the computer's memory by means of one or more magnetic cards. It consists of a modified office computer Programma 101 and a joined typewriter Tekne 3, both may operate together or separately.

In outline it may be reduced to the following fundamental units : memory, arithmetic-logical unit, print units and keyboards (see fig. 1).

The memory is subdivided into 10 registers : 3 operative ones, 2 for data only, 3 mixed ones (data, instructions or both) and 2 exclusively for the instructions which constitute the program.

The first three registers M, A and R each have a capacity of 30 digits, with decimal point and sign. The first register of the series receives the data from the keyboard of the calculator, whereas the other two preserve the results of the calculations.

The registers B, C, D, E and F each have a capacity of 30 digits and are used to preserve data (intermediary results or constants) or program instructions (in this case only the registers F, E and D).

It is also possible, and in most cases even desirable to split up each register into two parts of each 15 digits. Hence we get a maximum of 10 autonomous registers, indicated as follows: $\mathrm{B}, \mathrm{b}, \mathrm{C}, \mathrm{c}, \mathrm{D}, \mathrm{d}, \mathrm{E}, \mathrm{e}, \mathrm{F}$ and f .

The registers 1 and 2 (for instructions only) may store together 64 instructions. If a program exceeds this number, the registers F, f, E, e, D and d are succeedingly used, wholly or partly, for the instructions 65 till 160, according the length of the program. When a register contains only partly some instructions, it may contain also data of limited capacity.

The arithmetic-logical unit carries out the four basic arithmetic operations and extracts square root, taking acount of sign and aligning the decimal point automatically. It takes logical decisions (carries out jumps) in accordance with the value of specified results and conditions. All kinds of alternative subroutines can be provided in one program. Other calculations such as \ln , \sin , \cos, and others have to be programmed separately.

The print units consist of a typewriter and a print unit connected with the calculator. The former unit prints automatically data with decimal point and minus sign, according to the instructions of the

[^0]program and also determines automatically their position on a form inserted in the usual way in the carriage. The typewriter has a speed of 14 cps . The latter unit on the otherhand prints upon a tally roll at the rate of 30 cps .

As in the case of the print unit the keyboards too belong to two separate units. The keyboard of the typewriter is a classical one. Hence it is alphanumerical and it can give only direct instructions to the print unit of this machine. On the other hand the keyboard of the calculator or the operational keyboard contains keys wich are able to enter numeric data, keys with symbols to perform manual operations or to write programs and about four keys (V, W, Y, Z) to make the program start or continue from a given position in this program.

The program received by the memory by means of the operational keyboard is recorded on a magnetic card so that it may be used unlimitedly. These magnetic cards have two registration tracks (A and B) each of which may contain maximum 160 instructions, stored into the registers $1,2, D, d, E, e, F$ and f. Each instruction occupics only one position in the memory. It is coded by a number of symbols going from 1 to maximum 3. Finally it is also possible to make cards, the instructions (subroutine card) or numeric data (special card) only occupying the registers D, d, E and e. When a similar card (symbol SC) is inserted in a given way, only the content of these registers are modified without wiping out the basis program. This possibility is used for the so called «stand cards» (see below).

3. Operating procedure

The programmation has accounted for the desire to know for each stand or sample plot per tree species and for each tree species per diameter class, the value per ha of the number of trees, the basal area, the basal area increment, the volume increment, the volume, the money value of the standing trees, as well as the subtotals per tree species and the totals (for all the tree species) of these quantities.

Practically speaking the problem has been reduced to the elaboration of a main program « tree species», which is identical for each tree species, except for the value of the parameters, and which occupies the two tracks A and B of a single magnetic card. Moreover subroutine 1 enables us to preserve the subtotals per tree species temporarily on a «stand card», so that eventually after the last tree species, the totals per ha and certain average trecs may be calculated (see flowchart l).

31. Program «Tree species».

Track A containing the program (see flowchart 1 and appendix 3) the following instructions and calculations are performed, after the magnetic card is inserted and key W is pressed.

311. Code for the tree species (k)

To distinguish afterwards the calculations per tree species, the typewiter prints automatically a code at the beginning of each program, which is to be found in the table below for each tree species.

These codes are situated on the document just above the first column of the diameter classes (see appendix 1).

10	Hardwoods	20	Conifers
11	Quercus robur/petraea	21	Pinus sylvestris
12	Quercus borealis	22	Pinus nigra var, calabrica
13	Fagus sylvatica	23	Pinus nigra var. austriaca
14	Fraxinus excelsior	24	Larix leptolepis
15	Acer pseudoplatanus	25	Picea abies
16	Populus sp.	26	Abies pectinata
17	Betula pubescens	27	Abies grandis
18	Prunus avium	28	Pseudotsuga taxifolia

312. Diameter class (d_{u})

At the beginning of each program the initial diameter (in m) has to be entered in the register M by means of the operational keyboard. When card A is insected again for the next diameter class and the key V is pressed, these diameter class ($+\Delta \mathrm{d}=4 \mathrm{~cm}$) is printed out automatically. The values of the diameter classes are printed in the first column of the form. If there is occasionally no tree in the next diameter class, then the calculations may be abridged by passing over this diameter class.

In this case the card is inserted, the value of the diameter class which does contain trees is formed on the keyboard and A is pressed. By pressing V again, the operation goes its normal way and this new diameter is stored in register F for further calculations.
313. Number of trees $\left(\mathrm{n}_{\mathrm{u}}\right)$

By means of the operational keyboard, the number of trees per ha $\left(n_{u}\right)$ belonging to the diameter class d_{u} is entered. This

Flowchart 1.
Program «tree species» and subroutine 1 .
number is printed on the form in the second column, temporarily preserved in register f for further calculations and also added to the contents of register D to arrive at the subtotal Σn_{u}.

314. Basal area (gu_{u})

The basal area $g_{u}\left(\mathrm{~m}^{2} / \mathrm{ha}\right)$ of the trees with diameter d_{u} is calculated as usual, then multiplied by n_{u}, which results in the total basal area $n_{u} g_{u}$ for the corresponding diameter class d_{u}.

This value is printed on the form in the third column and also added to the content of register b, wich contributes to the calculation of the subtotal $\Sigma n_{u} g_{u}$.
315. Gurrent annual increment of the basal area (ig(u))

First the current annual growth (in m) of the diameter (idu(u)) has to be known. To calculate this value, we start from the generally accepted rule, according to which there is a linear relation between the diameter classes and the current annual increment of the diameters in these classes (in even-aged stands and for a limited growth period), so that :

$$
\mathrm{i}_{\mathrm{d}(\mathrm{u})}=\mathrm{a}_{\mathrm{o}}+\mathrm{a}_{1} \mathrm{~d}_{\mathrm{u}}
$$

having $u=1,2,3, \ldots$ resp. $\mathrm{d}_{u}=.10, .14, .18, \ldots$ etc.
Having established this value, the current annual increment (in m) of the basal area $\mathrm{i}_{\mathrm{g}(\mathrm{u})}$ for the diameter class d_{u} may be calculated by means of the simplified formula below :

$$
\mathrm{ig}_{(u)}=\frac{\pi}{2} \mathrm{i}_{d(u)} \mathrm{d}_{u}
$$

After the multiplication by n_{11}, the total current annual increment of the basal area $n_{u} i_{g(u)}$ is written in the fourth column and also added to the contents of register $\mathrm{B}\left(\Sigma n_{u} \mathrm{ig}(\mathrm{a})\right.$). The value of $\mathrm{i}_{a(\mathrm{u})}$ has to be preserved temporarily in register e so as to calculate the current annual volume increment.
316. Volume (v_{u})

To calculate the volume $\left(\mathrm{m}^{3}\right)$ for a tree of the diameter class d_{u}, we used a classical formula :

$$
v_{u}=a_{0}^{\prime}+a^{\prime}{ }_{2} d_{u}^{2}
$$

having $\mathrm{u}=1,2,3, \ldots$ resp. $\mathrm{d}_{\mathrm{u}}=.10, .14, .18, \ldots$ etc.
The volume of all the trees of the diameter class d_{u} is arrived at by the multiplication of v_{u} by n_{u}. This result is written in the
sixth column and added to the contents of register d , to calculate $\Sigma n_{u} v_{u}$. This value is temporarily stored into register e for other calculations.

317. Current annual volume increment ($\left.i_{\mathrm{y}}^{\mathrm{y}} \mathrm{u}\right)$)

For practical reasons $\mathrm{i}_{\mathrm{v}(\mathrm{u})}$ is calculated and printed before v_{u}. This is due to the fact that in the transfer to card B (see flowchart 1 and appendix 4) $i_{d(u)}$ can no longer be preserved in the memory and that on the other hand v_{u} is further needed for the calculation of the money value w_{u}.

Since in the paragraph above a given relation was assumed for v_{u}, this leads immediately to:

$$
\mathrm{i}_{\mathrm{V}(\mathrm{u})}=2 \mathrm{a}_{2}^{\prime} \mathrm{d}_{\mathrm{u}} \mathrm{i}_{\mathrm{d}(\mathrm{u})}
$$

having $\mathrm{u}=1,2,3, \ldots$ resp. $\mathrm{d}_{\mathrm{u}}=.10 ; .14 ; .18 ; \ldots$ etc.
After multiplication of $i_{v}(u)$ by n_{u}, the current annual volume increment $\left(\mathrm{n}_{\mathrm{u}} \mathrm{i}_{\mathrm{v}}(\mathrm{u})\right)$ of all the trees of diameter class d_{u} is printed in the fifth column ($\mathrm{m}^{3} / \mathrm{year} / \mathrm{ha}$) and added to the content of register $C\left(\Sigma n_{u} i_{v}(u)\right)$.

As v_{u} is calculated afterwards, the results $n_{u} v_{u}$ is to be found of course in the column before the last, exactly, after the current annual volume increment.

318. Money value of the standing trees (w_{u})

Taking into account on the one hand the limited capacity and possibilities of the computer unit and on the other hand the fact that the trees are selled in the stand, the money value of a single tree depends in practice mainly on the tree species, the diameter at 1.3 m , the volume and the price per m^{3}.

If we search for a mathematical relation between the diameter class d_{u} of a given species and the price in $\mathrm{Bfr} / \mathrm{m}^{3}$, the following equation is very usefull :

$$
\mathrm{w}_{\mathrm{u}}=\mathrm{a}_{0}^{\prime \prime}+\mathrm{a}_{\mathrm{u}}{ }^{\prime \prime} \mathrm{d}_{\mathrm{u}}+\mathrm{a}_{2}^{\prime \prime} \mathrm{d}_{\mathrm{u}}^{2}
$$

having $\mathrm{u}=1,2,3, \ldots$ resp. $\mathrm{d}_{\mathrm{u}}=.10 ; .14 ; .18 ; \ldots$ etc.
After multiplication of w_{u} by $n_{u} v_{u}$ preserved in register e (see above) the money value $\mathrm{n}_{\mathrm{u}} \mathrm{v}_{\mathrm{u}} \mathrm{W}_{\mathrm{u}}$ ($\mathrm{Bfr} / \mathrm{ha}$) of the number of trees n_{u} from diameter class d_{u} is arrived at and printed in the last column and added to the contents of register $\mathrm{d}\left(\Sigma \mathrm{n}_{\mathrm{u}} \mathrm{V}_{\mathrm{u}} \mathrm{W}_{\mathrm{u}}\right)$, After this last column is printed, the carriage of the typewriter automatically returns to the margin.

To get the next diameter class, only card A has to be inserted again and key V pressed. Afterwards the corresponding number of trees per ha of this new diameter class $\left(d_{u}+1=d_{u}+\Delta u\right)$ is entered in register M by means of the keyboard and than it starts all over again. If d_{n} was the last diameter class of a given tree species of the stand or the sample plot, the card A is not inserted, but key Z is pressed. Consequently the values $\Sigma \mathrm{n}_{\mathrm{u}}, \Sigma \mathrm{n}_{\mathrm{u}} \mathrm{g}_{\mathrm{u}}, \Sigma \mathrm{n}_{\mathrm{u}} \mathrm{ig}(\mathrm{u}), \Sigma \mathrm{n}_{\mathrm{u}} \mathrm{i}_{\mathrm{v}}(\mathrm{u})$, $\Sigma n_{u} V_{u}$ en $\Sigma n_{u} V_{u} W_{u}$ are printed under the corresponding columns,

As mostly stands or plots ore composed of several tree species, the values above have to be preserved temporarily on so-called special cards or stand cards (SC-A and SC-B) so as to be added to the subtotals of the other tree species and eventually to calculate the total of the whole and print it. These operations are carried out along the following subroutine (see also flowchart 1 and appendix 5).

22. Subroutine 1

Card «subroutine 1 » being inserted and key V pressed, the stand card SC-A (u^{\prime}) is inserted in a special way (the index $u^{\prime}=1$, $2,3, \ldots$ corresponding to series of stands or plots in a given order).

This card enters the respective area of the stand or plot K_{1} $\left(u^{\prime}\right), \Sigma n_{u}, \Sigma n_{u} g_{u}$ and $\Sigma n_{u} i_{g}(u)$ in the registers d, D, e, and E wich results in the adding of the last values to the corresponding totals of the former tree species, after key W has been pressed. When card SC-A (\mathbf{u}^{\prime}) is entered again the new subtotals are recorded on this card. Then track B of the same card is used to enter a code K_{2} (u^{\prime}) for the stand or plot, $\Sigma n_{u} i_{v}(u), \Sigma n_{u} v_{u}$ and $\Sigma n_{u} v_{u} w_{u}$ in the registers $\mathrm{d}, \mathrm{D}, \mathrm{e}$ and E , By pressing key Y exactly the same operations are performed as for SC-A (u^{\prime}) and in this case too the card SC-B $\left(u^{\prime}\right)$ is entered again, so that it can preserve the new subtotals.

The constants $\mathrm{K}_{1}\left(\mathrm{u}^{\prime}\right)$ and $\mathrm{K}_{2}\left(\mathrm{u}^{\prime}\right)$ which were entered in the registers mentioned above in preparing the «stand cards», are not taken into account for these calculations.

When all the calculations for each tree species are carried out, the magnetic card SC-A (u^{\prime}) is inserted again and key Z pressed; hence the final totals $\Sigma\left(\Sigma n_{u}\right), \Sigma\left(\Sigma n_{u g u}\right)$ and $\Sigma\left(\Sigma n_{u} i_{g}(u)\right)$ are printed. Card SC-B (u^{\prime}) being treated in the same way and keys C and Z pressed the values $\Sigma\left(\Sigma n_{u} i_{v}(u)\right), \Sigma\left(\Sigma n_{u} v_{u}\right)$ and $\Sigma(\Sigma$ $\mathrm{n}_{\mathrm{u}} \mathrm{V}_{\mathrm{u}} \mathrm{W}_{\mathrm{u}}$) are printed too, while at the same time the «model tree» d_{g} and the mean values $\overline{\mathrm{g}}, \overline{I_{\mathrm{g}}}, \overline{r_{\mathrm{v}}}, \overline{\mathrm{v}}$ and $\overline{\mathrm{w}}$ are calculated and printed in the same order under the corresponding columns.

Appendix 1 represents a similar form, resulting from calculations concerning a plot situated in an oak for est, locally mixed with Red oak, Japanese larch and Beech.

Flowchart 2.
Subroutine 2 (see also appendix 2).

The calculations and manipulations explained above are concentrated on one hand in a form (see appendix 1) and on the other hand in a stand card $\operatorname{SC}\left(u^{\prime}\right)$. For each stand or plot, the form gives a very detailed survey per tree species and per diameter class of the number of trees, the basal area, the increment of the basal area, the volume increment and the money value of the standing trees. Besides the subtotals of these quantities per tree species and afterwards the totals for all the tree species belonging to the stand or plot together, a number of «average trees» is calculated at the same time.

The stand card SC (u^{\prime}), at the beginning only a means to preserve subtotals temporarily, when passing from one tree species to another, becomes afterwards a kind of index card or memory card which contains the area (ha) of the stand or plot, under discussion and its code number, besides the quantities mentioned above such as total number of trees, basal area, increment of the basal area, volume, volume increment and money value of the standing trees per ha. Other calculations may be performed with a similar stand card combined with an appropriate subroutine, without the necessity to enter again the numeric data by means of the keyboard, which means eliminating one source of errors. By printing the code of stand or plot and the contents of the registers wanted, these values may be checked or tabulated at once.

The following subroutine describes one of the possible applications of such stand cards.

23. Subroutine 2

This subroutine is elaborated as an example (see also flowehart 2 and appendices 6, 7 and 8). Its aim is to convert the (relative) calculated results per ha of a series of stands into absolute values, the area of the stand taking into account as well as calculating the totals of the columns wich have to be printed; in other words asking for the results of the whole measured stands, plots or even a complete forest.

When the magnetic card «subroutine $2 / \mathrm{A}$ » is inserted and key V pressed, the first stand card SC-A (u^{\prime}) is entered and key W pressed. In this way the given area $\mathrm{K}_{1}\left(\mathrm{u}^{\prime}\right)$ of the stand under discussion, $\Sigma\left(\Sigma n_{u} g_{u}\right)$ and $\Sigma\left(\Sigma n_{u} \mathrm{i}_{g(u)}\right)$ are entered and the values $\mathrm{N}_{\mathrm{u}^{\prime}}$ (number of trees), $\mathrm{G}_{\mathrm{u}^{\prime}}$ (basal area) and $\mathrm{i}_{\mathrm{G}\left(\mathrm{a}^{\prime}\right)}$ (current annual increment) calculated for this area. All these values are added to the registers meant for that purpose and printed in this order (see appendix 2). After inserting «stand card» SC-B(u^{\prime}) and pressing key Y, the values $\Sigma\left(\Sigma n_{u} i_{v}(u)\right), \Sigma\left(\Sigma n_{u} v_{u}\right), \Sigma\left(\Sigma n_{u} v_{u} w_{u}\right)$ and the code $\mathrm{K}_{2}\left(\mathrm{u}^{\prime}\right)$ are entered into the memory. Than the values iv($\left.\mathrm{u}^{\prime}\right)$
(volume increment), $\mathrm{V}_{\left(\mathrm{u}^{\prime}\right)}$ (volume) and $\mathrm{W}_{\left(\mathrm{u}^{\prime}\right)}$ (money value) are calculated for the same area and added to the registers meant for that purpose. Next iv($\left.u^{\prime}\right), V_{\left.u^{\prime}\right)} \mathrm{W}_{\left(u^{\prime}\right)}$ and the code $K_{2}\left(u^{\prime}\right)$ are printed in this order on the same line and the carriage returns to the margin. Then the next stand card (track A) is inserted so that the operation starts again from the beginning.

After the last «stand card», the magnetic card «subroutine 2/B » is inserted and key V pressed, by which the general totals $\mathrm{K}_{1\left(\mathrm{u}^{\prime}\right)}, \Sigma \mathrm{N}_{\mathrm{u}^{\prime}}, \Sigma \mathrm{G}\left(\mathrm{u}^{\prime}\right), \Sigma \mathrm{i}_{\mathrm{G}\left(\mathrm{u}^{\prime}\right)}, \Sigma \mathrm{i}_{\mathrm{V}\left(\mathrm{u}^{\prime}\right)}$ and $\Sigma \mathrm{W}\left(\mathrm{u}^{\prime}\right)$ are printed in this order in the corresponding columns. If there is an interest in mean values per ha of these quantities for the series of stands or the whole forest, key W should be pressed to calculate them and to have them printed in the order $1, \mathrm{~N}, \mathrm{i}_{\mathrm{G}}, \mathrm{i}_{\mathrm{v}}, \mathrm{V}, \mathrm{W}$ in the corresponding columns.

If, as in the case of subroutine 1, certain average trees are to be calculated, a third card «subroutine $2 / \mathrm{C} »$ has to be inserted, Key V being pressed the average values per tree, namely $\overline{\mathrm{G}}, \overline{\mathrm{i}_{\mathrm{G}}}$, $\overline{\mathrm{iv}}, \overline{\mathrm{V}}, \overline{\mathrm{W}}$ and d_{G} are printed on the form under the mean values per ba calculated above. Since there is no column on this form for the diameters, the average tree d_{G} is printed at the bottom of the column of the stand codes.

Appendix 2 gives a survey of a similar operation.

3. Conclusions

In this contribution we esteem to have shown that in the field of forest inventory quite an amount of useful work can also be done with the aid of smaller computer units, limited in price such as the Olivetti P 203. Since we can dispose of a form for each stand or plot, with the required details as to structure, growth and compositions as well as a series of practical data such as total volume, increment and money value of the standing trees, a large amount of information, useful for research as well as for the practice, is at hand. Due to the «stand card » and later to several «stand cards» succeeding each other in time, it becomes possible to replace the classical index card system by magnetic cards (although these cards are to expensive at this moment). Thus the applications of the classical index cards are not only preserved, but it will also be possible to enter the cards directly in the office computer and to perform the necessary calculations and classifications by means of a subroutine elaborated for this purpose.

Finally we are conscient of the fact that similar operations are rather slow when compared with the larger computers. The drawbacks of the system are the facts that the data cannot get be entered
automatically and that for each tree species a «program card» is required.

It would be desirable also to introduce more parameters for certain calculations, especially concerning the volume and the money value. As the memory of the Olivetti P 203 is rather limited, it does not allow a similar extension without complicating the calculations and manipulations of the machine. Thus the advantages of similar machines would largely be lost. This would partly be remedied by supplying the office computer with a « punch read unit» wich will be realised in the near future, according to the constructors of this computer.

BIBLIOGRAPHY

1. JAMES, M.L., SMITH, G.M, and WOLFARD, J.C. - «Analog and Digital Computer Methods» - International Textbook Company, Pernsylvania 1965.
2. PARDÉ, J. - «Dendrométrie» - Imprimerie Louis-Jean, Gap 1961.
3. PRODAN, M. - «Holzmesslehre», - J.D. Sauerlander's Verlag, Frankfurt $\mathrm{a} / \mathrm{M} .1965$.

APPENDIX 1

APPENDIX 2

Forest inventory
Name :
Section
Date:

. 5000	210	12.1486	. 4227	4.9206	127.9796	50884	1000.1967
. 5000	175	12.3260	. 3835	4.4641	132.2848	54810	2000.1967
. 5000	200	13.0121	. 3034	3.5327	138.6713	61229	3000.1967
. 5000	240	11.7059	. 4900	5.7039	120.9057	65345	4000.1967
. 5443	391	7.9438	. 2175	2.5336	67.3916	15300	5000.1967
. 4830	313	9.7564	. 1705	1.9863	93.4791	22425	6000.1967
. 4968	149	14.6604	. 4641	5.4023	161.1199	88069	7000.1967
. 3772	162	10.1136	. 4018	4.6776	107.3500	64710	8000.1967
. 2532	156	8.2414	. 1434	1.6710	85.8899	32488	9000.1967
. 5000	195	14.1535	. 3545	4.1275	152.2780	75485	10000.1967
. 5000	210	10.1516	. 2721	3.1678	104.7325	38706	11000.1967
. 5000	270	9.3414	. 2706	3.1513	91.4621	50687	12000.1967
. 4134	235	12.7743	. 2689	3.1312	133.6224	143235	13000.1967
. 4969	288	10.8749	. 4454	5.1858	108.1488	45922	15000.1967
. 5000	195	14.3042	. 4181	4.8672	154.0325	92791	16000.1967
. 5000	265	14.3764	. 2925	3.4061	150.3932	63310	17000.1967
. 3259	182	8.5386	. 2057	2.3953	87.7158	30179	18000.1967
. 1899	121	5.9533	. 1839	2.1412	61.5228	25384	19000.1967
. 5317	265	20.4251	. 7390	8.6016	220.7496	100805	20000.1967
. 5000	250	12.9901	. 2958	3.4439	135.2155	64096	21000.1967
. 4931	207	12.2659	. 5513	6.4174	129.5298	72974	22000.1967
. 5000	250	12.2993	. 2365	2.7536	127.1740	47102	24000.1967
. 5000	250	13.1283	. 2668	3.1066	136.8238	48736	25000.1967
. 5000	215	14.2980	. 2016	2.3476	152.6794	62633	26000.1967
. 6583	309	19.8582	. 4109	4.7846	211,3635	89730	27000.1967
. 6899	296	18.6712	. 4180	4.8667	198.3610	88207	28000.1967
. 4957	272	14.9905	. 4932	5.7418	157.0536	64840	32000.1967
. 5950	440	16.4896	. 4740	5.5185	163.7723	62084	33000,1967
. 5000	245	13.5161	. 3213	3.7411	141.6580	72715	34000.1967
. 5000	365	15.1112	. 2867	3.3394	152.5463	61649	35000.1967
. 7051	282	22.4943	. 7537	8.7729	243.8011	137988	36000.1967
. 5633	360	15.2821	. 3919	4.5630	154.8224	63261	37000.1967
. 5000	441	8.6189	. 1541	1.7969	72.1074	27622	38000.1967
. 5000	335	9.8391	. 1520	1.7711	93.0955	28826	39000.1967
. 5000	280	11.8692	. 2501	2.9120	120.2464	39022	40000.1967
. 3352	157	9.4295	. 2372	2.7614	99.6848	41608	41000.1967
. 3352	124	7.4234	. 1941	2.2602	78.4773	35574	42000.1967
. 5000	165	3.9202	. 2148	2.5016	35.0750	8761	43000.1967
,4684	310	7.3124	, 1954	2.2764	65.2767	28058	44999,1967
. 2747	32	. 6796	. 0704	. 8206	5.8024	814	45000,1967
. 2500	65	2.3126	. 2030	2.3628	22.7605	10589	46000.1967
. 4600	354	6.4434	. 5998	6.9824	52.3380	9850	52000.1967
19,9362	10226	490.0466	13.8216	160.9114	5049.3963	2288503	
1.0000	512	24.5807	. 6932	8.0713	253.2777	11,4791	
		. 0479	. 0013	. 0157	4937	223	. 2469

P 203

program: \quad "tree species " (Oak)
code: $\quad 11 \quad$ dec. indic.: $4+(\underline{2})$
card: $\quad \mathrm{B} \quad \mathrm{Nb}$. cards: $\quad 2$

INSTRUCTIONS

P 203

INSTRUCTIONS

regist. 1		regist, 2		regist. F		regist.E		regist. D		content of register		
1	A V	33	E/S	65	A <	97		129		M	operati	onal
2	R S	34	E/S	66	φ	98		130		A	operatio	onal
3	D \downarrow	35	D/<	67	B / \downarrow	99		131		R	operati	onal
4	$\frac{1}{4}$	36	R Z	68	B :	100		132		b	subtota	
5	D/ 1	37	D<	69	A <	101		133		B	subtota	
6	S	38	$<$	70	1 s	102		134		c	subtota	
7	A W	39	E/L	71	c/4	103		135		C	subtota	
8	$D / 1$	40	*	72	:	104		136		d	subtota	
9	+	41	D \downarrow	73	A<	106		137		D	subtota	
10	R \downarrow	42	B / \pm	74	*	106		138		e	subtota	
11	D/I	43	D/ 1	75	D/ $/$	107		139		E	subtota	
12	D 1	44	B 1	76	:	108		140		f	instruc	tions
13	B/+	45	E/t	17	A $<$	100		141		F	instruc	tions
14	D \ddagger	46	c/2	78	$<$	110		142				
15	E/f	47	5	79	D \downarrow	111		143		inp	data	digits
16	B +	$4{ }^{4}$	B Z	80	:	112		144				
17	E/2	49	D/<	91	A <	113		145				
18	S	50	$<$	82	\checkmark	114		146				
19	A Y	51	\checkmark	83	E/ \downarrow	115		147				
20	E/+	52	E/<	84	:	116		148				
21	R \downarrow	53	R<	85	/ 1	117		149				
22	E/t	54	E/S	06	A <	118		150				
23	c/d	55	E/S	87	R <	119		151				
24	D +	56	A / \uparrow	88	E / S	120		152				
25	D I	57	R \ddagger	89	E/S	121		153				
26	C 1	58	R :	90	B/*	122		154				
27	D/+	59	R. \uparrow	91	B *	123		155				
28	D/ $/$	60	D / \downarrow	92	c/*	124		156				
29	S	61	B/ \downarrow	93	C*	125		157				
30	A 2	62	X	94	A *	126		158				
11	E/S	63	B :	25	S	127		159				
32	E/S	64	A 5	96		128		160				
constants on card					constants on card							
				1					1			
				\dagger					1			
									\dagger			
REMARKS :												
	START W aft Y aft SC B After	er in		V ng SC SC Spe	C ${ }^{\prime}\left(u^{\prime}\right.$ A u^{\prime} B(u^{\prime} ($)$ cies	$\begin{aligned} & \{-\mathrm{STT} \\ & -\mathrm{STA} \\ & \hline \end{aligned}$	TAMPA AMPA/R Z	EGT, G. $\text { nd } C$	TAMPA CZ			

regist. 1		regist. 2		regist. F		regist.E		regist. D		content of register		
1	A V	33	A <	65		97		129		M	operati	onal
2	S	34	/s	66		98		130		A	operati	onal
3	A W	35	1	67		99		131		R	operati	onal
4	E <	36	C \pm	68		100		132		b	ΣN	
5	$<$	37	$+$	69		101		133		B	ΣG	
8	E +	38	C 1	70		102		134		c	$E i$	$G\left(u^{\prime}\right)$
7	D/I	39	D \ddagger	71		103		135		C	Σi	V(u')
8	X	40	D X	72		104		136		d	E, K	$1\left(u^{+}\right)$
9	$1+$	41	A <	73		105		137		D	subtota	$1 \mathrm{~s}^{\text {c }}$
10	$A<$	42	/s	74		106		138		e	subtota	
11	R V	43	F/+	75		107		139		E	subtota	
12	$\mathrm{B} /+$	44	$\mathrm{F} / 2$	76		108		140		f	EiV	
13	B / \pm	45	E/ $/ \downarrow$	77		109		141		F		
14	D \downarrow	46	D X	78		110		142		inp	t data	digits
15	E \times	47	/ \uparrow	79.		111		143		inpu	data	digits
16	$A<$	48	A $<$	80		112		144				
17	Z	49	R Y	81		113		145				
18	B+	50	$\mathrm{F}+$	82		114		146				
19	B 1	51	F \downarrow	83		115		147				
20	E/ \downarrow	52	E<	84		116		148				
21	E X	53	/ \downarrow	85		117		149				
22	A <	54	E/S	86		118		150				
23	Y	55	D/ \pm	87		118		151				
24	$\mathrm{c} / \mathrm{+}$	56	V	88		120		152				
25	c/ 1	57	A 2	89		121		153				
26	E \downarrow	58.	E / s	90		122		154				
27	\pm	59	D / \pm	91		123		155				
28	D/ \downarrow	60	F/ \downarrow	92		124		156				
29	5	51	1	93		125		157				
30	A Y	62	F \downarrow	94		126		158				
31	D/2	63	R 5	95		127		159				
32	X	64	S	96		128		160				
constants on card					constants on							
									1			
									1			
									1			
REMARKS :												
$\begin{aligned} & \text { START V } \\ & \text { W after inserting SC A(u')-STAMPA } \\ & \text { Y after inserting SC B(} \left.u^{\prime}\right) \text {-STAMPA } \\ & \text { Z after last stand card } \end{aligned}$												

APPENDT X 6

P 203

INSTRUCTIONS

program: \quad Subroutine 2	
code: $\frac{S}{2}$ dec. indic.: $4+(2)$	
card: $\quad \mathrm{B}$	Nb, cards: $\quad 3$

regist, 1		regist. 2		regist, F		regist.E		regist. D		content of register		
1	A V	33	:	65		97		129		M	operati	onal
2	R S	34	$1 \uparrow$	66		98		130		A	operati	onal
3	F/T	35	$\mathrm{A}<$	67		99		131		R	operati	onal
4	F \pm	36	R V	68		100		132		b	二N	
5	B / S	37	B \downarrow	69		101		133		B	Σ, G	
6	E / S	38	:	70		102		134		c	Σi	(us)
7	E / S	39	A $<$	71		103		135		C	Ei)
8	D / L	40	2	72		104		136		d	$\sum \mathrm{K}$	(ux) $\left(u^{5}\right)$
9	$<$	41	c/d	73		105		137		D		
10	$B / 4$	42	:	74		106		138		e		
1.	$1 /$	43	A<	75		107		139		E	-	
12	A<	44	Y	76		108		140		f	$\Sigma \mathrm{V}$	${ }^{+}$
13	R V	45	C \downarrow	77		109		141		F	\geq W	
14	B<	46	:	78		110		142				
15	z	47	A <	79		111		143		inpu	data	digits
16	c/s	49	/s	80		112		144				
17	Y	49	F/ \downarrow	61		113		145				
18	C<	50	:	82		114		146				
19	/s	51	A <	83		115		147				
20	F \downarrow	52	/s	84		116		148				
21	$1 \uparrow$	53	$\mathrm{F} \downarrow$	85		117		149				
22	A<	54	:	86		118		150				
23	R Y	55	/T	87		119		151				
24	E/S	56	A <	88		120		152				
25	E/S	57	R Y	日9		121		153				
26	S	58	F / \downarrow	90		122		154				
27	A W	59	\pm	91		123		155				
28	D $/ \downarrow$	60	F \downarrow	92		124		156				
29	D/:	61	R S	93		125		157				
30	A <	62	S	94		126		158				
31	$<$	63		95		127		159				
32	B/ \downarrow	64		96		128		150				
constants		on c		ard	constants on			card				
				1					1			
									1			
									1			
FEMARKS :												
$\underset{\text { Mean values per ha }}{\text { START }}$					W							

APPENDIX

program: \quad Subroutine 2
code: $\frac{\mathrm{S} 2}{2}$ dec. indic: $\frac{4+(2)}{}$
card: $\frac{\mathrm{C}}{\mathrm{C}} \mathrm{Nb}$, cards: $\frac{3}{}$

INSTRUCTIONS

input data	digits

SUMMARX

Contribution to the Automation of the Calculations Involving the Forest Inventory with the Aid of an Office Computer

In this contribution an attempt was made to perform the calculations involving the forest inventory by means of an office computer Olivetti P203.

The general program (flowehart 1), identical for all tree species except for the values of the different parameters, occupies the tracks A and B of a magnetic card used with this computer. For each tree species one magnetic card is required, while some supplementary cards are used for the subroutines. The first subroutine (flowchart 1) enables us to preserve temporarily the subtotals between two tree species (mixed stands) an so called special or stand cards (SC), After the last tree species the totals per ha are calculated and printed on the lormer, the average trees occuring on the line below. Appendix 1 gives an example of a similar form resulting from calculations involving a sampling in a mixed stand consisting of Oak (code 11), Red oak (code 12), Japanese larch (code 24) and Beech (code 13). On this form we find from the left to the right : the diameter class (m), the number of trees per ha, the basal area ($\mathrm{m} 2 / \mathrm{ha}$), the current annual increment of the basal area (m2/year/ha), current annual volume increment (m3/year/ha), the volume (m3/ha) and the money value of the standing trees ($\mathrm{Bfr} / \mathrm{ha}$), On the line before the last, the totals of the quantities mentioned above and of all the tree species together are to be found. The last line gives a survey of the average values $\mathrm{dg}, \mathrm{g}, \overline{\mathrm{i}_{\mathrm{g}}}, \overline{\mathrm{i}_{\mathrm{g}}}, \mathrm{v}$ and $\overline{\mathrm{w}}$.

Besides this form each stand or plot has a so-called «stand card SC (u^{\prime}) 》 on wich the totals cited above as well as the area of the stand or the plot and its code are stored. Similar «stand cards \% may replace in many cases completely the classical index cards; moreover they have the advantage that the data can be entered directly into the computer so that further calculations, classifications or tabling can be carried out by means of an appropriate program or subroutinc. The subroutine 2 (flowchart 2) illustrates the use of similar cards for a series of stands or eventually a complete forest, the real values of the different quantities above are calculated and tabled (taking into account the area). At the same time the general totals and the general mean values per ha, as well as the average trees are calculated and printed. Appendix 2 represents a form resulting from such calculations by means of subroutine 2 .

SAMENVATTING

Bijdrage tot de automatisering van de berekeningen bij de inventarisatie van bossen met behulp van een bureelcomputer.

In dit artikel werd een poging gedaan om met behulp van een bureelcomputer Olivetti P203, het rekenwerk te automatiseren dat bij de inventarisatic van bossen noodwendig is.

Het algemeen programma (blokschema 1) dat op de waarde van de diverse parameters na, voor alle boomsoorten hetzelfde is, neemt de beide sporen A en B in van een klassicke magncetkaart, welke bij deze machine wordt gebruikt. Per boomsoort is bijgevolg één enkele magneetkaart nodig, terwijl een paar supplementaire kaarten voor de subroutines worden aangewend. Een eerste subroutine (blokschema 1) maakt het mogelijk om tijdelijk de subtotalen tussen twee boomsoorten in (gemengde bestanden) te bewaren op zgn. specialc- of bestandskaarten (SC). Na de laatste boomsoort kunnen de totalen per ha worden berekend en op het formulier uitgeschreven, terwijl op een volgende lijn de gemiddelde bomen of modelbomen voorkomen. Bijlage 1 geeft een voorbeeld van een dergelijk formulier dat het resultaat weergectt van berekeningen afkomstig van opnamen in een gemengd loofhrutbestand van mlandse Eik (code 11), Amerikaanse Eik (code 12), Japanse Lork (code 24) en Beuk (code 13). Op dit dokument bevinden zich van links naar rechts : de diameterklasse (in m), het stamtal per ha, het grondvlak (in m2/ha), de lopende jaarlijkse aanwas van het grondvlak (in $\mathrm{m} 2 / \mathrm{ha}$) de lopende jaarlijkse volume-aanwas (in $\mathrm{m} 3 / \mathrm{ha} / \mathrm{j}$) het volume (in m3/ha) en de geldwaarde (in Bfr/ha) van de bomen op stam.

Op de voorlaatste lijn worden de totalen uitgedrukt van alle hoger vernoemde grootheden en voor alle boomsoorten samen. De laatste lijn geeft een overzicht van de waarden van de modelboom d_{g} en $\overline{\mathrm{g}}, \overline{\mathrm{I}}_{\mathrm{g}}, \overline{\mathrm{i}}_{\mathrm{g}}, \overline{\mathrm{v}} \mathrm{en} \overline{\mathrm{w}}$, Buiten dit dokument bezit elke opname nog een zgn. "bestandskaart SC (u^{\prime}) " waarop naast de hoger vernocmde totalen, ook nog de oppervlakte van het perceel of bestand en een codenummer of volgnummer zijn gestockeerd. Dergelijke «bestandskaarten» kunnen in vele gevallen de kJassieke steckkaarten volledig yervangen en hebben daarenboven het grote voordeel de gegevens rechtstreeks in de computer in te lezen, waardoor met behulp van een aangepast programma verdere berekeningen, klassifikaties of tabellaties kunnen doorgevoerd worden.

De subroutine 2 (blokschema 2) is een voorbeeld van het gebruik van dergelijke kaarten, waarin voor een reeks van bestanden of cventueel een gans bos, de werkelijke waarden van de diverse vernoemde grootheden (rekening houdend met de oppervlakten) worden berekend en getabelleerd. Hierbij worden tevens de algemene totalen, het algemeen gemiddelde per ha alsook de modelbomen berekend en uitgedrukt. Bijlage 2 geeft een voorbeeld van een dergelijk dokument dat het resultaat is van hoger genoemde berekeningen met behulp van de subroutine 2 .

[^0]: (*) Manuel d'Information du Calculateur électronique P 203 - Olivetti 1969.

