SYLVA GANDAVENSIS

1976

A CLASSIFICATION-DROINATION ANALYSIS OF A BELGIAN MIXED FOREST IN THE TRANSITION ZONE OF TWO PHYTOGEOGRAPHICAL DISTRICTS. I, SUMMER DATA * P. Van Hecke, I. Impens, T. Van Tilborgh \& V. Veroustraete ** Departement Biologie, Universitaire Instelling Antwerpen, B - 2610 Wilrijk, Belgium.

Keywords :
Association-analysis. Belgium, Brabantina District. Cluster analysis, Flemish District, Gontrode, Mixed forest, Multivariate analysis, Principal component analysis.

Introduction

For years this forest has been permanently and intensively studied by researchers and students from the State University of Agriculture in Ghent (Belgium). Especially problems in forestry and much less in recreation were handled. As a result, only one study (Roskams, 1956 *), dealt with some phytosociological aspects in the manner of the ZürichMantpellier School.

Therefore, the need was felt ta analyse some vegetational aspects more thoroughly and on a mathematioal basis.

The alm of this paper is to handle the data collected in summer, Thase gathered in spring and other data related more to diversity and pattern. will be treated in later papers.

* Plant nomenclature fallows De Langhe et al. (1973)
** We are much indebted to Prof. dr. ir. M. Van Miegroet for permission to wark in this forest, to Prof. dr. ir. R. Gaossens for technical assistance, and to Dr. P. Hageweg (Utrecht).
* "Toepassing van de bosbouwkundige detailplanning op het bos ta Gontrode". Thesis. Rijkslandbouwhogeschool Gent, 83 pp.

Study area and sampling methods
The＂Aelmoeseneiebos＂forest（ $50^{\circ} 49^{\prime} N, 3^{\circ} 4 \theta^{\prime} \mathrm{E}$ ）is situated an the ter－ ritory of Gontrode and Landskouter（East Flanders）and has a total area of about 2θ ha．Only the central part，with the railway Ghent－Zotte－ gem as NW－border and the road Ghent－Geeraardsbergen as E－border，was used as study area（about 19 ha）．It shows a gradually slope from the $\mathrm{S}(22 \mathrm{~m})$ to the $\mathrm{N}(12 \mathrm{~m})$ ．Historical sources mention its existence for the first timg in the 9 th century．Presumably，the site was never to－ tally deforested in the following centuries，although the tree layers in particular were permanently managed．

The forest can be situated in the transition zone from sandy to loamy solls ；the following soil types were recorded：Lcc，sLcc，Ldc，wLde， （w）Ldc，Lhc，whop and Ldp（Leys，1966）．The two phytogeographical dis－ tricts mentioned in the title are the Flemish and the Brabantine dis－ trict respectively（De Langhe et al．，1973）．

During August and September 1974 two of us（T，V．T．and V．V．）laid sys－ tematically out 115 quadrats of $20 \mathrm{~m} \times 20 \mathrm{~m}$ ．Pormerly，a screen of num－ bered wooden pickets was placed over the whole area；the distance be－ tween two pickets in this＂regular＂distribution was about 70 m ．Each screenquadrat usually contained four relevé－quadrats，except at the edges of the forest．Each releve－quadrat got a number derived from the coordinate－numbers on the nearest picket，and an additional number（from 1 to 4）referring to its quarter position（Tab． 1 and Fig．1）．

For each relevé were recorded：1）the real cover（日arkman et al．．1964） of all vascular species（122 taxa ：Tab．2）and of the bryophytes（han－ dled as a group of species）on the altered Braun－日lanquet scale（－ 1 \％． $1 \%, 3 \%, 5 \%, 15 \%, 35 \%, 60 \%$ and 85% 〕．
2）the layers in which they were represented：first（dominant）and se－ cond treo layer，shrub，herb and moss layer．
31 the total cover and height of each layer．
4）the height of the litter．
Following the Flora－1ist of Van der Maarel each taxon was characterized with a code－number for computer analysis ；only a few taxa got a new number．

Classification and ordination techniques

1. Cluster analysis
1.1. Hierarchical grouping method (HG).

Ward (1963) developed this method to optimize an objective function. which can be chosen arbitrarily and which is the sum of the within group error sum of squares :

$$
e^{2}=\sum_{j=1}^{n} \sum_{k=1}^{m}\left(x_{j k}-\bar{x}_{k}\right)^{2} \quad \text { (1; Adam et al.. 1975) }
$$

where n is the number of quadrats in a cluster, m the number of taxa and \vec{x}_{k} the mean value of taxon k in this cluster.
This happens at any clustering level while grouping t clusters of relevés or taxa into $k<t$ clusters of relevés or taxa at any one stage. This clustering criterion has been calculated iteratively using the method of Wishart (1969).
Properties of the method have been discussed by Hogeweg (1976) and Van Schaik en Hogeweg (1977). These include the tendency to group objects which have little rasemblance to all other objects although they are mutually not very similar either. A special case of this property is the tendency noted by Adam et al. (1975) to group rare specieg, which can be inconvenient. However the most important feature of this clustering technique is its high discrimination power, which is very valuable in classificatory work in vegetation analysis. This last feature has also been assessed by Frenkel and Harrison (1974).
Grouping the taxa, the original data were Iogarithmized and the association between them computed by the Phi-coefficient of Pearson (Dagnélie, 1975) :

$$
\begin{equation*}
\varphi_{i j}=\frac{n \cdot n_{i j}-n_{i i} n_{j j}}{\sqrt{n_{1 i} \cdot n_{j j}\left(n-n_{1 i}{ }^{\left(n-n_{j j}\right)}\right.}} \tag{2}
\end{equation*}
$$

where $n_{i i}$ is the number of relevés with only the ith species, $n_{j j}$ the number of relevés with only the j th species, $n_{1 j}$ the number of relevés with both species common and n the total number of relevés.
Grauping the vegetation-relevés, by means of the taxa or the structural characters, the distance between the logarithmized original data was measured by the Mean Square Distance or Euclidean Distance (Sneath \& Sokal, 1973) :

$$
\Delta_{j k}=\left[\sum_{i=1}^{n}\left(x_{i j}-x_{i k}\right)^{2}\right]
$$

and the average distance

$$
\begin{equation*}
d_{j k}=\sqrt{\Delta_{j k}^{2} / n} \tag{4}
\end{equation*}
$$

where $x_{i j}$ and $x_{i k}$ are the values of the ith taxon or struotural character in the vegetation-relevés j and k.

Grouping the structure-relevés by means of the structural characters or taxa, the difference between the standardized original data was measured with the Mean Character Difference (Sneath \& Sokal, 1973) :

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left|x_{i j}-x_{i k}\right| \tag{5}
\end{equation*}
$$

where $x_{i j}$ and $x_{i k}$ are the values of the i th structural character or tar xon in the structure-releves j and k.

1.2. Unweighted pair-group centroid method (UPGC).

Instead of the squared Euclidean distance, recommended by Lance \& Williams [1967), Jaccard's similarity-index as madified by Spatz (Mueller - Dombais 8 Ellenberg, 1974) was used :

$$
\begin{equation*}
I S_{S P}=\frac{\Sigma\left(M_{w}: M_{g}\right)}{a+b+c} \times \frac{M_{c}}{M a+M b+M c} \times 100 \tag{6}
\end{equation*}
$$

where a, b and c are the number of species unique to relevé A, unique to relavé B and common to relevés A and B raspectively; Ma, Mb and Mc are the sum of quantitative values of the species unique to relevé A, unique to relevé B and common to relevés A and B; MW and Mg are the smaller respectively the greater quantitative values of a species common to relevés A and B. The procedure is described in detall in Spatz 8 Siegmund (1973).

The non-metric formula is applied ta the classification or grouping of taxa, releiés and structural characters.

Despite the artificial nature of the centroid or "average" relevé (Beals, 1973) this clustering technique has the theoretical advantage that the groups or clusters grow in information content as analysis proceeds and beccmes progressively less sensitive to errors and accidents In the data (Willians, Lambert \& Lance, 1966).

To determine the number of clusters, the formula of Beale (Kendall, 1972; Everitt, 1974) is incorporated in the programmes of these two olustering methods :

$$
\left.F\left(c, c_{1}\right)=\frac{\frac{R_{c_{1}}-R_{c}}{R_{c}}}{\left(\frac{n-c_{1}}{n-c}\binom{c}{\bar{c}_{1}}^{2 / p}-1\right.}\right\}^{\frac{n}{n}}
$$

where F is a psaudd-F-value, c the fixed maximal number of clusters. c_{1} the presumed optimal number of clusters, R_{c} and $R_{c_{1}}$ the sum af deviations fram c respectively c_{1} cluster centres. n the number of releves and p the number of taxa.
This results in a triangular matrix of optimality values.

2. Association analysis (NAA).

The normal or \square-mode analysis was apalied to those taxa with a constancy degree between B and 92%, i, e. 44 instead of 122. The chi-square as well es the point correlation coefficient V were computed : the first with Yates' correction, the second as :

$$
V=\frac{a d-b o}{[(a+b](a+c)[b+d)(c+d)]^{1 / 2}} \quad \begin{aligned}
& \text { association } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { (B; Poole. } \\
& \text { 1974). }
\end{aligned}
$$

The computation of each association matrix was continued until none of the single chi-square calues exceeded a certain probability level. As scale of classification the highest ΣX^{2} was used. The splitting up of the groups of releves was carried out with the highest $\Sigma|V|$, combined with a probability level of $1 \%\left(x^{2}=6,64\right)$ or $5 \%\left(x^{2}=3,84\right)$.
3. Principal component analysis (centered PCA).

Carried out in R-mode, matrices of covariances and correlation coefficients were computed from lagarithmized data. Only for the first five com ponents the eigenvelues and eigenvectors were calculated. using the Hotelling iteration method but in general only three of them will be discussed.
For the computation of the correlation matrix, Pearson's product moment correlation coefficient was used :

where x_{i} and y_{i} are the values of the variates (or items) x and y in the ith item (or variate) whilst \bar{x} and \bar{y} are the means.
This pure mathematical ordination technique was recentiy criticized by Beals (1973) because rigid mathematioal formality is combined with ecological casualness and because a species (in a species-dimensional spaca) is considered as an orthogonal component of ecological distence instead of an ecological variable in the vegetational space. Consequently, the curvilinear distortion can be fierce (Bouxin, 1976).
Techniques 1,1 and 3 were part of the NUMTAX Sequence, a subset of BIOPAT program system for biological pattern analysis, written by P. Hageweg \& B. Hesper (1972 ; Theoretical Biolagy, State University Utrecht)*. P. Hogeweg kindly put this program, implemented on the IBM 370-765 of the Technical University of Delft at our disposition.
Programs for the methods 1.2 and 2 are written by ir. L. Bamps (U.I.A.), the computations were carried out on the PDP $11 / 45$ computer of the Universitaire Instelling Antwerpen.

All techniques were applied to two different data-sets : on the one hand the four layers with the vascular plants, on the other hand the shrub and herb layers alone. This was done with the idea to eliminate largely anthropogenic influences on the data since tree species especially have been managed through planting and thinning techniques.

Comparisan of the results within each technique

1. Lluster analysis
1.1. Hierarchical grouping methaa

Ta perform the taxa-clusters of the forest as a whole, only the species with a presence zetween 4 and 96 \% were used, irrespective of the number of layers in which they occurred. Consequently, their number was reduced from 122 to 63. Considering the shrub and herb layer only, no reduction in degree of presence was involved, but a species occurring in both layers was handled as being twa species. The floristic reduction due to

[^0]the eliminating of both tree layers was amazingly very slight : only Salix alba (1116), and Populus nigra (2005) disappeared.
As a consequence, the α-diversities in both approaches differ hardly.

As a whole, with rather low similarities - especially when all the strata are taken into account - the final result of the clustering is diseppointing : the clusters are either too small or too large. In other words, the tendency to form specific combinations or vegetation types is only very slight.

Using taxa, the clustering of vegetation-releves happens in the four as well as in the two lawer layers at high similarity levels (Figs. Za and 2b). Comparing Fig. 3a and 3b there is rather considerable overlap batween some clusters.
Taking Fig. 3a as a reference-figure, this Hierarchical Grouping Method regularly reveals the existence of four distinct vegetation-types, when considering the entire forest or the shrub and herb layer alone : clusters 1 (along the brooklet), 2 (the wet W-corner), 5 (the clear-cut) and parts of 6 (the SE-edges of the clear-cut and the forest and the NE-corner). The sites occupied by cluster 6 are floristically more consistent in the tres layers, but display a smaller variety in their shrub and herb layer.
Taking now fig. 3b as a reference-figure and only taking into account the shrub and herb layer, one eluster consisting of 5 relevés is added : those surrounding relevé 28 (N-corner) which behave very independentiy and form a Pteridium-Sorbus - Prunus serotina vegetation with low coverpercentages in shrub and herb layer. Clusters 2, 4 and 5 on the contrary show a greater floristic consistency in their shrub and herb layer, but a greater variety in the tree layers.

A smaller cluster in the center of the forest (consisting of releves 9 , 10, 60 and 781 is always present but pather latent : it fits in with cluster 3 (Fig. 3a ; all the four layers), or with cluster 2 (Fig. 3b ; the two lower layers only).

The clustering of vegetation-releves with the aid of structural characters gives an only slightly different picture.

Grouping the structure-relevés by means of structural characters (Fig. 4a) or taxa (Fig. 4bl reveals a great similarity, except for the cluster 4 in Fig. 4b which cannot be characterized.

Moreover, the appearance of the four distinct vegetation types (fig. 3a) is somewhat disturbed in the elustering of the structure-relavés. It must be remembered that both these clusterings are applied only to the four forest layers-data.
1.2. Unweighted pair-group centroid method.

The same precautions as in 1.1 for the taxa-clusters were taken, except that when considering the shrub and herb layer alone, a species occurring in both layers was treated as one species.

Again the similarities between the species are low to very low i. e. in general less than 30% Especially in the clustering of shrub and herb layer, the iuentification of all clusters is not easy and partially impossible, so that 32.5% of the taxa remain unclustered.

Comparing Figs. Sa and 5b, where the vegetation-relevés are grouped acsording to the taxa, only the clusters 4 and 5 show a rather high conformity. The most remarkable fact is that cluster 1 of Fig. 5a is split up over three separate clusters (1, 2 and 3 in Fig. 5b) : cluster 1 refers to relevés along certain forest-paths where species are found which indicate the presence of ruderal and nitrogenous soils (in some cases rubble deposition). The parts of clusters 2 and 3 are entirely related to the corresponding parts of clusters 2 and 3 in Fig, 5a : again they reflect the humid to wet W-corner and the much drier N-corner typified by Prunus serotina. The two Figs, show a considerable resemblance except for the vegetation-cluster(s) along the brooklet, where the tree layers are very equal but not the shrub and herb layer.

Once mare the picture given by the clustering of vegetation-relevés using structural characters is confusing. The clear-cut and its neighoouring wet W-corner (the Populus - Primula vegetation) only are found in both approaches. Otviously when treating all four layers, the tree layers are totally dominant.
This methad reveals, in both approaches, the existence of the clear-cut and the W-corner, and, when using the taxa only, also the Prunus vege-
tation in the N-corner. A conform vegetation-cluster along the brooklet is appesring anly when the four layers are considered. The two lower layers reveal the existence of a forest-path vegetation of human origin.
2. Normal association analysis

Dealing with the four layers as a whole, we get grosso modo the same results in applying either a 5% stopping rule or a 1 one lFigs, ba and Bb). A very small number of relevés is then moving either between clusters 4, 5 and 6 or between clusters 2 and 3 (Figs, $7 a$ and 7b). The vegetation of the clear-cut, the humid-wet W-corner and the ruderal forest-paths (clusters 1) is well defined. The N-corner (clusters 6) is now related to three releves in the forest-center and five along the SE-edge. Moreover, the representative clusters are negatively characterized, that means identifiable only by the absence of species. When the max. Σx^{2}-1evel is lowered, namely ta 48,60 and 41,62 resp. it seems that in about $2 / 3$ of both clusters Hedera helix occurs. In both cases the relevés wherein this species is absent are the same : nrs. 29, 98,99 and 101 ; they form largely the cluster of the forestcenter.

The picture displayed by the two Figs. (Ba and Bb) of the shrub and herb layer is more disturbed. The clear-cut, the humid-wet W-corner and the ruderal forest-paths again are easily detected. The N-corner together with the SE-forest edge are unly persisting when the stopping rule of 1% Is handled; but with 5\% they are absorbed in the much greater cluster 6 (Fig. Ba). Far this reason and because the clusters 4 and 7 (Fig. Bb) are more clearly separated, the use of the $1 \%-s t o p p i n g$ rule gives a better result. Inevitably, two clusters are characterized by the absence of species at the level chosen ; but cluster 7 (Fig. Ba) possesses Acer pseudoplatanus in 19 af the 21 relevẽs, while cluster 6 (Fig, B6) Hedera helix again in 10 of the 13 relevés.

To perform a normal analysis with structural characters instead of taxa is unnecessary and moreover much less informative fFig, 8 c shows only one cluster which is comparable to one of the previous Figs. : the clear-cut).

As a conclusion this association-analysis is able to detect again the vegetation-types of the clear-cut, the fiumid W-corner and the ruderal somewhat nitrogenous soils along some forest paths. Defining the Prunus serotina-vegetation in the N-corner is rather faulty. It resem-
bles a small part of the forest-center (relevés nrs. 98, 99 and 101) and the SE-forest edge, except for one case where this vegetation-type aisappears in a large cluster of 45 relevés (Fig. Ba : 6).
In addition to what is mentioned in the second paragraph the use of two stopping rules leads us to the conclusion that the 1 \% stopping rule yields somewhat better results, which are easier for interpretation.
3. Principal Component Analysis

Starting from a variance-covariance matrix, comparing the results from four with thase from two layers, and using the texa - referring to 180 and 131 variates or floristic variables - an edaphic (hydrographic ?] curvilinear gradient can be detected as well on the first (accumulating 24 and 25 \% respectively of the total variance) as on the third component (accumulating in both approaches $B \%$ of the total variance) : on the one end the taxa with high positive scores preferring not too ory crumbly soils and with not too deep ground-water table; on the other end the highly negative scored taxa preferring well drained and more compact. soils. Moreover, a structural gradient has been found on the same components when considering the entire forest li.e. four layers) : the highly negative scored taxa occur in less stratified and species-poorer parts compared with the highly positive scored taxa (Figs. 9a and 9b). Ordinating the relevés a clear hydrographic gradient is shown twice and anly on the first eigenvector (Figs. 10a and 11a); but a structural gradient only once. The positive scored - higher than + 5 or + 3 respectively relevés refer to places laying in depressions with insufficient drainage; the negative scored - higher than - 4 or - 1,5 respectively - relevés exhibit a low cover of the secand tree and shrub layer. It means that more component axes are useful by ordinating the taxa, but the nature of the gradient seems to be more defined by ordinating releves.
Restricted to the lower layers (shrub and herb 1.), using the taxa and comparing now a variance-covariance matrix with one of correlation coefficients, the former matrix shows an edaphic (hydrographic ?) gradient again on the first and third component axes, the latter only on the first (Fig, 10b). This component accumulates only 9% of the total variance. The positive sooring - higher than $+0,6$ - taxa form the end of the gradient where the level of the soil water is high or rather high and displays distinct changes, whilst the negative scoring anes - higher than - D.2 - characterize the well-drained part of this sail drainage gradient. Ordinating releves the variance-covariance matrix reveals on the first
eigenvector a bydrographic gredient, the carrelation matrix a structural one (Fig. 11b). Compared with the very remote releve 54 , the highest negatively scored relevés - more than $-0,5$ - show a tell shrub layer with intermediate cover, a rather low herb layer with low caver and a rather thick litter layer. This structural gradient appears also on the secand eigenvector : the cover of the shrub and the height of the herb layer in the group of positively scored relevés ~ more than $+1,5$ - have twice res pectively half of the corresponding layers in the group of negatively scored relevés - more than -0.75 . As a conclusion, here too the ordination of relevés gives more direct information. The nature of the gradients which are emphasized depend largely on the nature of the basic matrix. Computing a matrix of correlation coefficients implies that e.g. the first five eigenvectors assimilate a much lower percentage of the total variance, compared with the computation of a variance-covariance matrix. As a result, more data - species or relevés - can be concentrated around the origin of the axes, so that anly the extremes on the gradients are emphasized. This occurs when the relevés are ordinated but it does nat hamper the detection and interpretation of the gradient(s) involved ; on the contrary.

Comparison and discussion of the results of the different techniques. Dut of the three classification techniques (HG, UPGC and NAA), the last one is only able to demonstrate the existence of three well-defined independent clusters : the clear-cut, the humid-wet W-corner and the ruderal forest-paths. The remaining two (clustering) techniques raveal the existence of five clusters or vegetation-types. The HG-method shows besides the three vegetation-types just mentioned these of the N -corner, the SE-edges of the forest and the clear-cut and both sides of the brookIet. However, the UPGC-method exhibits the existence of the vegetation of the clear-cut, humid W-corner and the N-corner, but not of the edges of the clear-cut and the forest. Moreover, according to the use of the number of layers, this method detects the presence of both the vegetation along the brooklet and the ruderal forest-paths. Unlike the findings of Pritchard \& Anderson (1971), NAA has in any case not helped to clarify the results of the clustering methods. Although both authors could compare five of these techniques ingtead of two, we can in general agree with them that $H G$ produces generally the most attractive results. Moreaver, more difficulties are met interpreting the UPGC-dendrograms as compared to the $H G$-dendragrams. In the former a varlable number
of species, sometimes relevés, is ciustered at very Iow similarity-ieveis. As a result, the dendrograms become very asymetrical and the application of Beale's formula is practiaally impossible. Even a subjective stopping rule was hard to define by Pritchard \& Anderson [1971]. As a contrast with the study of Adam et al. (1975) taxan classification has in no way helped the interpretation of the relevé classification.

The occurrence of numerous reversals has entianaed the defining of clusters in the UPGC-dendrograms, whilst the phenomena of chaining and crowding were in a mare or less degree always present. Williams et al. (1966) as Well as Frenkel \& Harrison (1974) have comprehensively discussed the nature of these problems ; they could demonstrate that the use of non-metric similarity coefficients geve the better results.

The power of the PCA to outline the clusters Ivegetation-typesJ described above is much smaller. The clear-cut is always well shown, the vegetation on both sides of the brooklet rarely. Usually, its composition resembles that of the W-corner. The $S E$-edges and the N-corner remain very inconspicious, whilst the forest-paths never appear. While Moore et al. (1970) ~ with regard to releves - considered PCA-scatter diagrams in many respects more satisfactory than cluster analysis dendrograms, the conclusions of other authors agree more with ours. A PCA of all stands, carried out by Grigal \& Goldstein (1971), provided no distinct groups whilst an ordination of quadrats gave little insight into the data, despite the use of i.a. a centeredPCA (Adam at al., 1975). of the six regularly exhibited clusters in this forest, the two clustering methods account for five of them, of which four accurring in both methods: They seem the mast powerful taol ta distinguish well outlined vegetations.
Summary
Cover and height data about 122 taxa were obtained from 115 quadrats laid out in systematic way in a mixed forest in the tangent area of the Flemish and Brabantine Districts (Blalgium). They were submitted to three classification and one ordination technique ; the situation was described by repeatedly comparing the four principal forest-layers ifirst and sacand tree, shrub and herb layerl with the latter two. Taking into account the fout leyers, better results are gained with NAA and PCA whilst the two clustering methods (HG and UPGC) yield clearer defined clusters with two layers only.

Using the 5% and 1% stopping rules in NAA, the results are somewhat better with the latter. The use of taxa to cluster (HG and UPGC) or to ordinate (PCA) was disappointing in the former two. In PCA, a variancecovariance matrix was giving more and better interpretable gradients when applying taxa, a matrix of correlation coefficients was more suitable with relevés.

In all, six readily definable vegetation-types and a much more diffused seventh one (a remnant) cauld be distinguished. Of the three classification techniques. HG and UPGC account for five, NAA for only three of them.

Important factors seam to be hydrography and stratification of the forest

Samenvatting

In een gemengd bos van angeveer 19 ha in het grensgebiad van het Vlaams en het Erabants Distrikt (Belgie) werden 115 opnamen verricht in evenzovele sistematisch uitgelegde proefvlakken. Drie cluster- en én ordinatie techniek werden taegepast. Narmale Associatieanalyse (NAA) en Principale Componenten Analyse (PCA) gaven betere resultaten wanneer beide boomlagen, struik- en kruidlaag als één geheel werden beschouwd, de averlge twee Clusteranalysen (HG en UFGC) echter wanneer de laatste twee apart werden bekeken. In de NAA Ieverde de haltdrempel van 1 \% wat duidelijker groepen als die van 5 \%. Povere resultaten werden verkregen met het klassificeren der taxa (n1, 122) zowel met HG. UPGC ols PCA. Met PCA kwamen gradienten duidelijker tot uiting wanneer de variantie-kovariantie matrix steunde op taxa en deze van korrelatiekoëfficiënten op opnamen. HG en UPGC waren in staat viJf vegetatietypen te onderscheidan, NAA echter enkel drie : in totaal zes goed en één veel minder te omschrijven vegetatietype.

Résumé

Dans un bois mixte de quelque 19 ha , sous aménagement forestier, situé dans Ia région frontière des districts phytogéographiques Picardo Brabançon et Flandrien (Belgique), 才15 relevés relevés étaient pris dens un même nomore de quadrats placés systématiquement. Trois méthodes de classification et une méthade d'ordination étaient appliquées. L'analyse normale des associations interspécifiques (NAA) et l'analyse en composantes principales (PCA) donnaient les meilleurs résultats en considérant globalement les deux strates arborescentes et les strates arbustive et herbacée, les deux autres méthodes de classification (HG et UPGC) par cantre seulement quand les deux strates les plus basses étaient examinées. Appliquant le NAA la délimitation des groupes était un peu mieux sur le seuil de 1% que sur celui de 5%. En classifiant ou en prdinant les espèces, tous les résultats obtenus par les HG, UPGC et PCA étaient diffiçiles à interpréter. Appliquant le PCA et s'appuyant sur des espèces, une détection claire d'une gradient se produisait plus facilement avec une matrice de variances-covariances, par contre sur des relevés avec une matrice de corrélations.

HG et UPGC étaient capables de déterminer cing types de végêtation, mais NAA pas plus que trois ; pour l'ensemble des quatre analyses, six types de végétation distincts et un beaucaup plus confus.

References

Adam, P., H.J.B. Birks, B. Huntley \& I.C. Prentice, 1975. Phytosociological studies at Malham, Tarn Moss and Fen, Yorkshire, England. Vegetatio 30 : 117 - 132.
Earkman, J.J., H. Doing \& S. Segal. 1964. Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Bot. Neerl. 13: 394 - 419.
Beals, E.W. 1973. Drdination : mathematical élégance and ecological naiveté. J. Ecal. 61 ; 23-35.
Bouxin, G. 1976. Ordination and classification in the upland Rugege forest (Rwanda, Central Africa). Vegetatio 32 : $97-115$.
Conover. W.J. 1971. Practical nonparametric statistics. Wiley, New York $X I I+462 \mathrm{pP}$.
Øagnélie, P. 1975, Analyse statistique a plusieurs variables. Vander, Bruxelles, 362 pp.
De Langhe, J.E., L. Delvosalle, J. Duvigneaud, J. Lambinon \& C. Vanden
Berghen. 1973. Nouvelle Flare de la Belgique, du Lirand-Duché de Luxembourg, du Nord de la France et, des Régions vaisines. Bruxelles, XCVII + 821 pp .
Everitt, B. 1974. Cluster Analysis. Heinemann, London, VI +122 pp .
Frenkel. R.E. \& C.M. Harrison, 1974. An assessment of the usefulness of phytosociolagical and numerical classificatory methods for the community biogeographer. J. Biogeogr. 1 : 27 - 56.
Grigal. D.F. \& R.A. Goldstein. 1971. An integrated ordination-classification analysis of an intensively sampled oak-hickory forest. J. Ecol. 59 : 481 - 492.
Hogeweg. P. 1976, Topic on bialogical pattern analysis. R.U. Utrecht. 20 日 pp.
Kendall. M.G. 1969. Cluster Analysis. In : Watanabe, S. (ed.). Frontiers of Pattern Recognition : 291-309. Academic Press, New York.
Lance. G.N. \& W.T. Williams. 1967. A general theory of classificatory sorting strategies. I. Hierarchical systems. Computer J. 9 : 373-380
Leys, R. 1966. Bodenkaart van België. Verklarende tekst bij het kartblad Oosterzele $7 \square E$. Centrum voar Bademkartering, Gent.
Moore, J.J., P. Fitzsimons. E. Lambe \& J. White. 1970. A comparison and evaluation of some phytasociological techniques. Vegetatio $20: 1$ 20.

Mueller-Dombais. D. \& H. Ellenberg. 1974. Aims and methods of vegetation ecolagy. Wiley, New York, $x x+547$ pp.
Pogle, R.iv. 1374. An introcluction ta quantitative ecology. Mc Graw-Hill Hew York, YII , 532 pp .
Pritcharc. M.M. \& A.J.B. Anderson. 1979. Dbservations on the use of oluster analysis in botany with an ecnlogical example. J. Ecol. 59 : 727 - 747 .
Sneath. P.H.A. 2 R.R. Sokal. 1973. Numerical Taxonomy. Freeman, San Francisco, $\mathrm{xV}+573$;p.
Spatz. G. \& J, S2egmund, 1973. Eine Methode zur tabellarischen Ordination, Klassifikation und ökologisolen Auswertung von pflanzensoziologischen Bestancisatifnahme dorch den Computer. Vegetatio 2B:1-18.

Van Schaik, C.P. \& P. Hogeweg. 1977. A numerical syntaxanomic study of the Calthion palustris in the Netherlands. Vegetatio 35: $65=80$. Watd. J.H. 1963. Hierarchical grouping to optimize an Dbjective function. J. Am. Stat. Ass. 58: 236-244.
Williams, W.T., J.M. Lambert \& G.N. Lance. 1966. Multivariate methods in plant ecology. V. Similarity analyses and information-analysis. J. Ecol. 54: 427-445.
Wishart, D. 1969. An algorithm for hierarchical classification.
Biometrics 22 : $165-170$.

Tab. 1. Relevé- (a) and cooodinate numbers (b).

(a)	(b)	(a)	(b)	(a)	(b)
1	15.03/1	39	13.02/2	77	11.05/3
2	14.02/4	40	12.02/4	78	12.04/2
3	14.03/3	41	13.03/1	79	12.05/1
4	13.04/3	42	11.04/3	80	11.04/4
5	14.03/2	43	12.03/2	81	11.04/1
5	14.04/1	44	12.04/1	82	10,04/3
7	13.03/4	45	08.05/3	83	10.04/2
8	13.04/2	46	0日.04/2	84	89.05/3
9	12.04/4	47	08,05/2	85	10.05/1
10	$12.05 / 3$	48	03.05/1	86	09.04/4
11	13.05/1	49	08.04/4	B7	08.03/4
12	11.04/2	50	07.06/3	88	09.04/1
13	10.05/3	51	08.06/4	89	08.03/1
14	10.04/4	52	07.05/4	90	09.03/2
15	11.05/1	53	06.04/4	91	09.03/3
16	10.04/1	54	07.04/2	92	09.05/2
17	09.03/4	55	06.05/3	93	08.06/3
15	09.04/3	56	07.05/1	94	08.06/2
19	10.03/2	57	13.05/3	95	08.05/4
20	05.02/2	58	14.04/2	98	09.06/1
21	08.03/3	59	14.05/1	97	09.06/4
22	08.03/1	60	13.04/4	98	11.05/2
23	08.02/4	61	$14.05 / 4$	99	10.05/4
24	10.05/2	62	14.06/3	100	11.06/1
25	09.06/3	63	15.06/1	101	11.06/3
26	09.05/4	64	15.05/2	102	11.05/4
27	08.07/3	65	14.04/3	103	07.05/3
28	09.05/2	66	15.03/2	104	08.04/2
29	00.06/4	67	15.04/4	105	07.05/2
30	09.07/1	68	14.03/4	106	07.04/1
31	15.04/2	69	14.03/1	107	07.04/4
32	$14.05 / 3$	70	19.02/4	108	12.04/3
33	14.04/4	71	13.03/3	109	08.05/1
34	15.95/1	72	14.02/2	110	08.04/3
35	$12.05 / 4$	73	13.03/2	111	08.03/2
36	$14.06 / 2$	74	13.04/4	112	07.04/3
37	14.05/2	75	12.03/4	113	08.02/1
38	12.03/3	76	$12.03 / 1$	114	07.03/4
				115	13.05/2

Table 2. Taxa found in the "Aalmoesereiebos" (Gontrode, $50^{\circ} 49^{\prime}$ N., $3^{\circ} 48^{\prime} \mathrm{E}$.) during August and September 1974 , with their code- and variatenumber(s).

Acer pseudoplatanus
Aegapadium podagraria Agzostis gigantea
Agruatis tenuis
Ajuga reptans
Annus glutinosa
Alnus incana
Angelica sylvestris
Anthoxanthum odoratum
Anthriscus sylvestris
Arctium minus
Arrhenaterum elatius
Arum maculatum
Athyrium filix-femina
Betula pubescens
Betula pendula
Blechnum apicant
Brachypodium sylvaticum
Cardamine pratensis Carex pilulifera Carex remota
Carex sylvatica Carbinus betilus Cestanea sative Girsium palustre Cornus sanguinea Corylus avellana Crataegus monogyna Crataegus laevigata Dactylis glomerata Deschampsia cespitosa

0002	2-5	Dryopteris dilatata	0419	51
2011	6	Dryapteris carthusiana	0426	52
0017	7	Epilobium angustifolium	0450	53
3019	B	Equisetum arvense	0482	54
0024	9	Erica tetralix	0473	55
0036	10-11	Eupatorium cannabinum	0490	56
0037	12-13	Fagus sylvatica	$\square 513$	57-60
0 nco	14	Filipendula ulmeria	0526	61
0086	15	Frangula alnus	0530	62-64
0070	16	Fraxinus excelsior	0531	65-68
0084	17	Galeopsis tetrahit	0543	69
0096	18	Galium palustre	0552	70
0103	18	Geranium rabertianum	0576	71
019	20	Geum urbanum	0579	72
0139	21-24	Glechoma hederacea	0582	73
0140	25-27	Hedera helix	0598	75-78
0146	28	Heracleum sphondylium	0607	79
0151	29	Holcus lanatus	0631	80
0205	30	Holcus mollis	0632	61
0251	32	Humulus lupulus	0639	82
0258	33	Ilex aquifollum	0658	83
0264	34	Juncus subuliflorus	0679	84
[270	35	Juncus effusus	0680	85
0273	36-39	Juncus tenuis	0690	86
0335	40	Lamium album	0700	87
D355	41	Lamíum galeobdolon	0702	88
0366	42-44	Lamium purpureum	0706	85
0369	45	Lonicera periclymenum	0759	90-93
0370	46	Luzula pilosa	0770	94
0390	49	Lycopus europaeus	0780	95
0397	50	Lysimachia nummularia	0782	96

I.ysimachia vulguris	0784	97
Maianthemum liifolium	0786	98
Malus sylvestris	0787	99
Melica uniflart	0808	100
Mercurialis letennis	0823	101
Molinia caerulina	0832	102
Mynstatum aquatj cum	0847	103
Oxalis atetosella	0909	104
Plantagul mijor.	0947	105
Poa annul	0952	105
Poa palustris	0957	107
Poa trivialis	0959	108
Polygnnatum multiflorum	0964	109
Polygonum hydropiper	0972	110
Proulus tremuls	0983	111
Potentilla aresita	100日	112
Patentilla sterilis	1011	113
Primula elatiar	1015	115
Prunella volgaris	1017	115
Prunus avium	1018	117-119
Prunus padus	1019	120-121
Prunus seratina	1020	122-124
${ }^{\text {Pr }}$ runus spinosa	1021	125-126
Pteridium aquilinum	1022	127-128
Quercus robur	1037	129-132
Ranunculus flammula	1048	133
Ranunculus repens	1056	134
Ribes rubrum	1071	135
Rosa canina	1081	136-137
Rubus idaeus	1091	138

Rosa canina
RuM

Rumex o. ssp. obtusifolius	1101	139
Rumex sanguineus	1103	140
Salix alba	1116	141
Salix cinerea	1119	$142-143$
Sambucus nigra	1199	$144-145$
Solidaga virgaurea	1222	147
Sorhus aucuparia	1227	$148-150$
Stachys sylvatica	1246	151
Stellaria holostea	1249	152
Stellaria media	1250	153
Taxus baccata	1267	155
Teucrium scorudonia	1273	156
Tussilago farfara	1316	157
Urtica dioica	1321	158
Valeriana repens	1333	159
Viturnum opulus	1367	$160-161$
Vinca minor	1377	164
Viola reichentachiana	1386	165
Rubus sp.	1402	$166-167$
Quercus rubra	1406	$168-171$
Larix kaempferi	1407	$172-174$
Amelanchier lamarckif	1408	$175-178$
Robinia pseudacacia	1411	$177-178$
Ulmus glabra	1451	$179-181$
Euonymus europaeus	2001	182
Populus x canadensis	2002	$183-186$
Pseudotsuga menziesii	2003	-
Abies grandis	187	
Callitriche sp.	2004	188
Populus rigra	2005	189

Populus rigra

Fig. 1. The "Aelmoeseneiebas" forest ($50^{\circ} 49^{\prime} N$. $3^{\circ} 48^{\prime}$ E) near Ghent. For further explanations : see text.

Fig. 2. Cluster Analysis : dendrograms of vegetation-relevés, after Hierarchical Grouping. (HG), using taxa occurring in (2a) four layers and (2b) the two lower layers. Dashed Iine : level on the maps 3a and 3b. First number-row ; eluster-numbers, second number-row : number of vegetation-relevés.

Fig. 3. Cluster Analysis : distribution of vegetation-relevés, after Hierarchical Grouping (HG), using taxa occurring in (3a) four layers and (3b) the two lower layers. Opposite to the recommendation of the dendrograms, clusters 1 and Z (3a) and clusters 4,5 and $5(3 b)$ are shown separately. Cluster symbals : $\theta=$ cluster 1, $\theta=$ cluster 2, 图 = cluster 3, $\theta=$ cluster 4, ($)=$ cluster $5, \mathbf{A}=$ cluster $5, ~(0=$ cluster $7, \quad \mathrm{P}=\mathrm{picnic}$ site. $M=$ abandoned meadows with young decidupus mixed plantations,

Fig. 4. Cluster Analysis: distribution of structure-relevés, after Hierarchical Grouping (HG), using (4a) structural characters in the four layers and (4b) taxa in the twa lower layers. Cluster symbals ; see Fig, 3.
Fig. 5. Cluster Analysis (unweighted pair-group centroid method : (IPGC) of vegetation-relevés using taxa in (5a) four layers and (5b) the two lower layers. Cluster symbols : see Fig. 3.

Fig. 6. Normal Association Analysis : distribution of vegetation-relevés using taxa occurring in four layers. Subdivision at a probability level of (6a) 5% and (6b) 1%. Cluster symbols : see Fig. 3.

Fig. 7. Normal Association Analysis : dendrograms with subdivisions at a probability level of (7a) 5% and (7b) 1%. Used taxa oocur in the two lower layers. For code-numbers : see Table 2. Dashed line ; level on the maps Ba and Bb .

Fig. 8. Like Fig. 6, but using taxa occurring in the two lower layers. Cluster symbols : see Fig. 3.

Fig. Bc. Distribution of vegetation-relevés using structural characters from four layers. $O=$ second tree layer and moss layer absent, $\theta=$ only second tree layer absent, $\boldsymbol{\Delta}=$ only moss layer absent, $\theta=$ four layers present.

Fig. 9. Principal Component Analysis of the variates or floristic variables occurring in the four layers : (9a) axes 1 and 2, (Sb) axes 1 and 3. Variates laying between -0.02 and +0.02 on both axes are not shown separately ($\pi=158$ resp. 159).

Fig. 10. Principal Component Analysis of (10a) a variance-cavariance matrix between relevés (axes 1 and 2) using the taxa occurring in four layers, and (10b) a correlation matrix between the floristic variables (axes 1 and 3) occurring in the two lower layers. Variates in Fig. 10b laying between -0.1 and +0.1 an buth axes are not shown separately $(n=39)$.

Fig. 11. Principal Component Analysis of the relations between the vegetation relevés, using the floristic variables occurring in the two lower layers : (11a) a variance-covariance matrix, (11b) a correlation matrix. Axes 1 and 2. Variates in Fig. 11b laying between -0.5 and +0.5 on both axes are not shown seperately $(n=55)$.

Fig. 1

Fig. 2a

Fig. 2 b

0
0
$\dot{0}$
$i=1$

[^0]: * stencilreport

