
87 

THE EVOLUTIONARY LEARNING ALGORITHM IN PROCESSING OF ECOLOGICAL 
DATA, CASE-STUDY : POPLAR TREE-RING ANALYSIS 

Hans Beeckman' & Kristine Vander Mijnsbrugge2 

SUMMARY 

(1) Tree-rings are a challenge for modern ecological research · 
dealing with 'time' and 'complexity'. 
(2) Machine learning appears to be an efficient tool to extract 
knowledge from data sets showing a high degree of complexity. 
(3) The software package PC/BEAGLE, using the evolutionary 
learning algorithm, is able to find some high quality rules for 
NeIder design poplar plantations. 
(4) Poplar trees growing in thin stands show a strong negative 
temperature signal. 
(5) 'Beaupre'-trees are almost more massive than 'Unal'-trees, 
except for the first years after planting in the wider planting 
distances. 

INTRODUCTION 

'T ime ' and ' complexi ty', two concepts often denied by the 
scientific enterprise in its classical definitions, are a main 
challenge for modern science (Prigogyne & stengers, 1985). Most 
of the ecosystems are a 'messy laboratory' for researchers. They 
have to take into account a lot of variables and an extraordinary 
quantity of interactions which are difficult to survey and which 
can be situated at different levels of system integration. 
Identification of the distinct environmental factors and the 
individualization of the responses of a population to each factor 
are not always possible. Moreover, some processes, such as the 
delays in the effect of density dependence, lead to complex 
responses that have no simple relation with the changes in the 
environment. 
Anyhow, such relations have always been very important for 
ecological science. Ecological studies assume implicitly that 
there is a network of interactions and feedbacks connecting all 
species in a pattern which is consistent in time and space: the 
ecosystem. 'Ecosystem structure and function' is understood to 
refer to those aspects which appear only at the level of the 
ecosystem, rather than its components. Ecologists focus in 
particular into those biological interactions and regulatory 
feedbacks which tie the system together and cause it to behave 
as a recognizable integrated system, rather than as a collection 
of independent populations (Odum, 1971). 
In the early stage of ecological research, it was clear that 
ecologists could only make use of totally deterministic models 
in rather rare circumstances where populations are small enough 
to localize and measure all population elements. In addition, 
most of the relations are not monothetic : a huge quantity of 
species is involved. Much more relations are uni- or multimodal, 
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also showing optima and limits, than linear. The triangle axiom 
is not always fulfilled, what makes the Euclidean space not 
useful as a geometric model in certain cases. Causal relations 
are difficult to detect, all the more because in ecosystems 
network causalities are more frequent than linear chain 
causalities of one cause and one effect. 
Through all these diff icul ties, the research stages of explaining 
and interpreting are often never reached: the knowledge 
acquisition bottleneck is very small in ecology and many 
knowledge potion bottles stay unopened. Nevertheless there is no 
shortage of interesting data. 'Nothing is so detrimental to the 
acquisition of insight than an underestimation of the knowledge 
and reasoning in a particular domain' as Breuker and wielenga 
(1983) put it. 
Tree-rings for instance contain information about the total life 
span of a tree, thanks to the yearly formed wood increment. As 
such, they are valuable ecological sensors detecting 
environmental change on a time scale which is sometimes as long 
as several hundreds of years. Tree-ring analysis in which 'time' 
and 'complexity' are involved, has placed heavy demands on 
methodological improvement, concerning as well variable selection 
and methods of measurement as in data processing. 
The assessment of tree-ring-environment relations is hampered by 
the complexity of forest ecosystems. The response of trees to 
weather for instance might depend on the planting distance, which 
causes extreme differences in growing conditions, as well as the 
response of trees might change according to genetic code of the 
tree or according to the tree age. 
To evaluate the meteorological signal as a function of stand 
density and stand age, a man-made poplar ecosystem, which is 
genetic and edaphic homogenous, is investigated. 
The question arises if Artificial Intelligence methodologies can 
be useful in processing of complex data sets, consisting of tree
ring variables and external explanatory variables. 

MATERIAL AND METHODS 

Tree-rings from a NeIder design poplar plantation 

(i) Clones 

Poplar and poplar plantations have always been a characteristic 
feature of the Flemish landscape. Poplar is also important to the 
total wood production in Belgium : about 15 % of the annual 
production is poplar, while poplar stands contribute only 6.5 % 
to the total forested area (Schalck, 1982). 
Populus x euramericana (Dode) Guinier 'Unal' and 'Beaupre' are 
two of the famous fast growing hybrid clones of Populus 
trichocarpa and Populus del toides, realized by extensive breeding 
work in 1961 by the state Equipment station for Poplar Culture, 
Geraardsbergen, Belgium (d'Oultremont and Steenackers, 1973). 
These poplar clones show extremely good productivity, growth 
characteristics and disease resistance. 

(ii) Experimental fields 

The first experimental field is part of the Provinciaal Domein 
Puyenbroeck at Wachtebeke (Oost-Vlaanderen), with geographical 
coordinates latitude 51°09'25' 'N and longitude 3°54'00' 'E, 
constitutes a large recreational area of about 400 hectares 
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(Fig.1). The area is planted with poplar trees using row-type and 
lane-type planting patterns. A rectangular field of 7.81 ha has 
been reserved for field experiments in relation to 
meteorological, hydrological and primary production programs. A 
first part of the field was planted in spring 1974 with two 
poplar clones 'Unal' and 'Beaupre' (Lemeur et al., 1976). 
A second experimental poplar plantation is located at Kaulille 
(Bocholt-Limburg) , being part of Lozerbos state Forest 
(52 0 12'30' 'N ; 5°32'40' 'E). 

Figure 1 : Location of experimental fields. 

(iii) Planting pattern 

The planting pattern of the Wachtebeke experimental field was 
based on NeIder's (1962) design of concentric circles (Fig.2): 
the interplant distance on the circles increases with increasing 
distance from the midpoint (from 1.5 m on the inner to 8 m on the 
outer circle). The planting pattern permits to evaluate variable 
planting distances within a minimum of space (Table 1). The wide 
range of interplant distances provided rather extreme differences 

in growing conditions. 
A similar planting pattern has been used at Kaulille: thirteen 
concentric circles and a planting distance varying from 1.5 m on 
the inner circle to 9.17 m on the outer circle. The first growing 
season after planting is 1980. 

(iv) Sampling 

In spring 1990 15 'Beaupre' trees from different circles of the 
Wachtebeke plantation and hence interplant distances were cut for 
dendro-ecological and woodtechnological research. Transversal 
cross-sections taken at 1.30 m height were transported to the 
laboratory for dendrochronological investigation. 
In Kaulille stem diameter at breast height was measured, almost 
every year. 



Table 1 

Figure 2 
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Sample trees and corresponding planting distance em) 

circle plant. dist.(m) trees per ha 

tree 1 2 1.71 3,943 

tree 2 4 2.05 2,743 

tree 3 6 2.46 1,908 

tree 4 7 2.69 1,592 

tree 5 9 3.23 1,107 

tree 6 8 2.95 1,327 

tree 7 10 3.54 923 

tree 8 12 4.24 642 

tree 9 12 4.24 642 

tree 10 12 4.24 642 

tree 1 1 14 5.08 447 

tree 12 16 6.09 311 

tree 13 16 6.09 311 

tree 14 16 6.09 311 

tree 15 17 6.67 259 

N 

The NeIder design planting pattern of the Wachtebeke 
experimental field. 
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(v) Data set 

A first data file was constructed with ring widths and 
meteorological data, concerning the Wachtebeke field. 
The tree-ring widths were measured by a semi-automated image 
analysis system in four directions (N, E, S, W). 
The external explanatory variables are the april-september 
meteorological variables, calculated from the daily information 
on the wheather from Melle, being a main meteorological station 
at 20 km from the experimental field. Seven meteorological 
variables are taken into account: (a) mean temperature (OC), (b) 
amount of precipitation (rom), (c) mean relative humidity, (d) 
amount of sunshine (minutes), (e) mean percentage sunshine, (f) 
mean insolation (Jjcm2), (g) mean evaporation (rom). All variables 
are standardized by substracting the mean and dividing by the 
standard deviation. This way there are some zero or negative 
cases as well as some posi ti ve ones. This is an internal 
housekeeping requirement which will make it possible for the 
BEAGLE program to handle numeric target expressions. 
An associated tag-file contains the variable names, indicating 
whether they are numeric or character data. 
Another data file was constructed with the stem diameters of the 
Kaulille plot from 1981 to 1989. 

The evolutionary learning algorithm and data processing 

(i) Artificial Intelligence 

Artif icial Intelligence is the part of computer science concerned 
with designing "intelligent computer systems", that is, systems 
that exhibit the characteristics we associate with intelligence 
in human behavior - understanding language, learning, reasoning, 
solving problems, uncertainty and so on (Boden, 1977). Or in 
other words, the field of AI is trying to produce both software 
and hardware that can simulate the characteristics of a human 
being which we classify as intelligent: learning, reasoning, 
problem solving. The development of AI brought with it the 
extension of the concept of "data" to "information", the latter 
being relevant data with respect to a clearly defined domain. AI 
also gave birth to the concept of "knowledge", being the ability 
to distinguish between data and information. Knowledge is 
concerned about objects, relationships, facts, rules, ... Men or 
machines are intelligent to the extent to which they control and 
use knowledge. 

At the heart of all expertise whether human or computerized, and 
hence of ecological research, lies pattern recognition (Fig. 3.) 
(Forsyth & Rada, 1986). In all pattern recognition tasks, there 
are a number of measurements made of an event or object. These 
raw measurements are transformed in some way into a set of 
features, and the features are used by a decision procedure to 
assign the event to one category or another ('classification') 
or to a certain place along an ordination axis ('ordination' in 
ecology, 'scaling' in psychology). Classification and ordination 
are clearly processes of information reduction. Machine Learning, 
as a descipline within AI, is one way of approaching the problem 
of pattern recognition. 
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World 

Measurements Features Ca:egories 

Figure 3 : Pattern recognition (Forsyth & Rada, 1986) 

(ii) Machine Learning 

Machine Learning is the key to machine intelligence, just as 
human learning is the key to human intelligence (Forsyth & Rada, 
1986). It is the process whereby machines increase their 
knowledge or improve their skill. When a computer system improves 
its performance at a given task over time, without re
programming, it can be said that it has learned something. An 
underlying conviction of many researchers in machine learning is 
that learning is a prerequisite to any form of intelligence, and 
therefor it is the core of AI. 
All systems designed to modify and improve their performance 
share certain important common features. Fig. 4. sketches the 
four maj or components of a typical learning system, which 
essentially is a pattern recognizer which learns to associate 
input descriptions with output categories. 

Desired 

Ideol system 

Figure 4 : A framework for learning. (Forsyth, 1989) 

The critic compares the actual with the desired output. In order 
to do so, there must be an 'ideal system', against which the 
system's behaviour is measured. In practice this may be a human 
expert or teacher. 
The Learner is responsible for amending the knowledge base to 
correct erroneous performance. Different learning strategies have 
been developped. 
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The Rules are the data structures that encode the system's 
current level of expertise. They guide the acti vi ty of the 
performance module. The crucial point is whether they can be 
amended. Real learning systems have in stead of a 'read only' 
knowledge base rules that constitute a programmable-erasable 
knowledge base. 
Finally, the Performer is the part of the system that carries out 
the task, using the rules. When the rules are updated, the 
behaviour of the system changes. 

with respect to the possibility of modifying the rules, learning 
systems can be classified into two main categories : the black 
box learning systems, also called the geometric or statistical 
approach, and the structural learning systems (Forsyth & Rada, 
1986 ; Jain, 1987). 

(a) A "black box" learning system is a system completely 
specif ied by its input-output behaviour. Being able to look 
inside the black box is not one of the design goals, therefore 
it is not possible changing internal rules. It does not matter 
whether the behaviour is realized electronically, hydraulically, 
mechanically, or by brains. Black-box methods share two 
distinguishing features : (1) a mathematical bias and (2) a 
'write-only' description language. The mathematical bias means 
that they tend to employ well-established procedures from the 
realms of statistics and control theory. Partly as a consequence 
of this, the output of the system is opaque. It may calculate a 
covariance matrix or optimize a set of coefficients, but even a 
mathematically sophisticated person cannot inspect knowledge in 
this format and readily determine what the system has learned. 
This is what is meant by saying that black-box learning systems 
have a 'write-only' knowledge base. It is computable, but not 
intelligible. To extract 'knowledge' tables and figures should 
be constructed and interpreted by experts. 

Systems of this group use a description language in which input 
patterns are presented as feature vectors, always numeric and 
sometimes binary. Thus an input example is a vector of numbers. 
If there are p features, then this vector defines a point in p
dimensional space. Various mathematical/geometric terms are used 
to describe regions in this abstract space. Many of the methods 
attempt to partition the feature space so that clusters of 
similar examples are grouped or examples are arranged along a 
concrete or abstract gradient. These jobs are known as cluster 
analyses or ordinations. 
Learning systems of the black-box type fall into two main groups, 
on the basis of how they store their knowledge. There are those 
that adjust the parameters of coefficients of a discriminant 
function until it is optimal, or at least satisfactory, according 
to predefined criteria ; and there are those which perform what 
amounts to an indexing operation : they seek to construct little 
boxes in feature space such that each box contains only (or 
mostly) one kind of pattern. Borrowing the terminology of SAMUEL 
(1967), we say that systems of the second type construct 
'signature tables'. 

Tree-ring data are often analysed by time-series analysis, by 
response function analysis or by canonical ordination methods, 
which could be classified as 'black-box' methods. 
The classic book 'Tree Rings and Climate' by Fritts (1976) 
provided a superb introduction to the science of dendrochronology 
and an in-depth description of techniques useful for extracting 
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climatic information from tree-rings. More recently a complete 
overview of the 'Methods of Dendrochronology and the Applications 
in the Environmental Sciences' is edited by Cook & Kairiukstis 
(1990) with excellent contributions of for instance Guiot (1990), 
Visser & Molenaar (1990), Eckstein (1990) , ... 

Such procedures of the black box type have proved to be useful 
in a number of pattern-recognition tasks, but the knowledge they 
acquire tends to be rather opaque. Only the effectiveness of the 
system matters. Though a component of learning I these methods are 
not learning in the sense of improving performance at an assigned 
task. 

(b) In contrast, structural learning systems are intended 
to generate knowledge that is humanly comprehensible as well as 
it is accessible to machines. 
structural pattern recognition is intuitively appealing. The main 
advantage of the structural approach over the geometric-black
box approach is that, in addition to classification, it also 
provides a description of how the given pattern is constructed 
from the primitives (smallest pieces of information for which 
further dividing is not relevant). This paradigm has been used 
in situations where the patterns have a definite structure which 
can be captured in a set of rules. 

(iii) Paradigms for Machine Learning 

Four major paradigms (learning strategies) focus the efforts of 
researchers nowadays (Hellinck & Naydenova, 1990). 

(a) Inductive learning. Induction within machine learning 
mainly involves answering the question 'in what ways can a 
machine develop general rules from specific examples, and how 
reliable are those rules in practice?'. The principle is that the 
expert supplies a set of domain examples of different types of 
decisions, called a training set, together with the attributes 
which describe the examples, and values he/she assigns to those 
attributes. From the training set, a computer program using an 
inductive algorithm induces a set of rules, which are often 
constructed in the form of a decision tree. 

(b) Analytic learning. Another more recently developed but 
also very widely used paradigm is based on analytical learning 
from few examples (sometimes even a single one) within a rich 
underlying domain theory. The methods that are used in the 
process are deductive rather than inductive and past problem
solving experience is fully utilized to formulate control rules 
that enable more efficient application of the available domain 
knowledge. 

(c) Connectionist learning methods. Connectionist learning 
systems (neural networks) make use of parallel computation in 
netwerks of interconnected elements (originally designed as 
models for the human brain). The main characteristic of the 
connectionist learning systems is that they discriminate between 
equivalence classes of patterns from an input domain in a 
holistic manner. 

(d) Genetic or evolutionary algorithms ('classifier 
systems'). In any evolutionary learning scheme a population of 
structures (mostly rules) are treated to generate new structures 
in ways that are explicitly designed to simulate the main 
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attributes of biological reproduction like cross-over, inversion 
and mutation. Selection of rules which survive the longest and 
have greatest likelihood of 'breeding' depends on their 
performance at the task in hand. This principle is analogous to 
the survival of the fittest phenomena and natural selection. 
(iv) The PC/BEAGLE program 

One of the most promising methods currently being investigated 
in ecology is that of inducing sets of rules from a data set, 
which consists in our case of as well tree ring variables as 
environmental variables, by using an evolutionary algorithm : 
BEAGLE (Biologic Evolutionary Algorithm Generating Logical 
Expressions). These rules can be very helpful in understanding 
the major characteristics of systems of trees by classifying 
objects or by predicting scores on one variable using the other 
variables in the data set. 

The BEAGLE system is a commercially available software package 
employing evolutionary rule induction. It consists of six main 
modules which are generally run in sequence (Forsyth, 1989): 

SEED Selectively Extracts Example Data 
ROOT Rule-Oriented Optimization Tester 
HERB Heuristic Evolutionary Rule Breeder 
STEM Signature Table Evaluation Module 
LEAF Logical Evaluator And Forecaster 
PLUM Procedural Language utility Maker 

A diagram of how they link together is shown in Fig. 5. 

Figure 5 

(Targlt uprl .. lon) 

(Prototypl rul .. ) 

(Evolvld rulll) 

(RullS + .Ignaturl tobll) 

(Follcattt) 

(PalCal or FORTRAN routlnl) 

The linkage of the six main components of BEAGLE 
(Forsyth, 1989) 
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(a) SEED is a simple data extraction program. It interfaces 
BEAGLE to external databases. It can split databases in two 
(training and test data sets) and i t can append leading and/or 
lagging variables for time-series analyses. 

(b) In the ROOT module an initial population of random rules 
for the breeding process is created. I n this module the target 
expression, which is a logical or numerical expression describing 
what you want to predict, is formulated. 

(c) HERB is the main module: it actually performs the 
evolutionary process by generating new rules. It takes a datafile 
from SEED, a tag-file (describing the variables) and an initial 
rule file (from ROOT) as input. It produces a new rule file as 
output. 
The main program flowchart is shown in fig. 6. 

r-----i~ Evaluate each rule on every case, 
with bonus for shorter rules 

Rank rules in descending order of 
merit and remove bottom half 

Replace 'dead' rules by mating a 
pair of randomly chosen survivors 

Mutate a small number of rules at 
random and tidy any new rules 

Figure 6 : HERB main program flowchart (Forsyth, 1989) 

The survival of rules is determined by their rank order of merit. 
The scoring procedure rests on the Chi-squared statistics. Each 
rule can give a true or false result and the target expression 
can also yield a true or false result. Thus each joint outcome 
falls into one cell of a fourfold contingency table. The more 
this table departs from chance expE~ctation, the better i. e. the 
more effectively the target can be predicted from the rule value. 
Herb contains two nested loops. The inner loop goes through a 
given number of generations and retains the best rule found so 
far. Then the process repeats, thus several rules are generated 
for output. 

(d) In STEM the independent rules are combined into a 
signature table, which is a forecasting or classification 
procedure. Each rule is a predicate that can be in one of two 
states - true or false. with four rules there are 16 combinations 
each defining a particular 'signature I. STEM re-examines the 
training data and counts the number of times each signature 
occurs and at the same accumulates the average value of the 
target expression for each signature. 

(e) LEAF runs over the test data set and estimates what the 
value of the target expression should be. 

(f) Finally PLUM translates a BEAGLE rule file in a Pascal 
or Fortran subroutine. 
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On repeated occasions it is showed that BEAGLE is extremely 
useful for anyone who has to try to predict scores on one 
variable using the other variables in the data set or to classify 
objects on the basis of existing data. 
As an illustration on these two objectives, forecasting and 
discrimination, two data sets were selected to be analysed by 
BEAGLE. 

A first data set consists of poplar tree-ring widths and 
meteorological data. Such a data-set could be analysed by 
traditional statistical packages which provide multiple 
regression analysis, canonical ordination or principal component 
analysis. 

The second data set, with yearly diameter data of two poplar 
clones planted from different planting distances, is to tryout 
the discrimination possibilities of BEAGLE. Traditionally, this 
problem is approached by variance analysis, cluster analysis or 
discriminant analysis. 

RESULTS 

Prediction 

with the seed module the space-delimited files are converted in 
comma-delimited ones. Since there are not enough samples to split 
up the data set, no test set was created with the Wachtebeke 
data. 
Subsequent BEAGLE-analyses of the Wachtebeke data provide a set 
of rules, concerning the relations between ring widths of the 
sample trees and the meteorological variables. 
with the logical target-expression (temperature> 0 ), the trees 
with the strongest temperature signal could be found. 
A high quality rule (score of 87.44) is produced by the LEAF
module: treeS > tree9. When the summer temperature is higher than 
the average summer temperature of the 1974-1989 period (target 
true), there is a good chance that the rule is true: the ring 
width of tree number 5, growing in a planting pattern of 1107 
trees per ha will be broader than the ring width of tree number 
9, growing in a planting pattern of 642 trees per ha. 
The rule quality is expressed in a seqt'p.nce of numbers : 

87.44 7 0 1 8. 
The score 87.44 is obtained from the Phi-coefficient, which is 
related to the Chi-square statistic and gives an index between -
1 and +1, measuring the degree of association between two binary 
variables. This number is scaled to a value between 0 and 100 and 
a small penalty which increases with the length of the rule is 
substracted. It expresses the departure from pure-chance 
expectation. Any score over 60 can be considered as excellent, 
although this depends on the application. The other four numbers 
are frequencies from a contingency table : 7 cases are true 
positive, 0 false positive, 1 is false negative and 8 cases are 
true negatives. In other words : when the summer temperature is 
higher than the average temperature for the periode 1974-1989 (as 
is the case for 8 years), the rings of tree number 5 are wider 
than these of tree number 9, except for one year. When the summer 
temperature is lower than the average value (also 8 times) the 
ring width of tree 5 is lower than the radius increment of tree 
9. 
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A high quality rule, revealing a strong precipitation ( target 
precipitation > 0 ) signal is : 

« tree14 <= tree11 ) & ( tree 15 < 0.6114145 » 
86.44 7 1 0 8 . 

When we don't work with standardized values of tree rings and 
meteorological data (target : precipitation > 336 mm, being the 
average summer rainfall), two other rules, combined in a 
signature table were produced by the STEM-module : 

precipitation > 336 
«tree10 + tree6) < 1,24 
85.35 7 1 0 6 
(tree1 >= (tree8 - 0 . 312) 
85.35 7 1 0 6 

0.5 14 
00 0 6 0.0714 0 
01 0 0 0.5 
10 0 0 0.5 
11 7.0 8 0.83 87.5 

Such a signature table gives four possible combinations (each of 
the two rules can be true or false). Each of these is a 
'fingerprint' or 'signature' that identifies a particular pattern 
in the data. 
STEM gives a line between the rules and the signature table with 
two numbers : the proportion of cases were rainfall during the 
growing season is higher than 336 mm and the number of cases in 
the set. The first column shows the status of the two rules (e.g. 
01 meaning that Rule 1 is false and Rule 2 is true). The second 
item is the number of positive examples (i.e. cases where the 
target was true). The third item is the count of cases which fell 
into this rule combination group. The fourth item is the estimate 
of the target value. The final item is the percentage of cases 
in this signature group for which the target was true. So the 
last row of the table states that there were 8 cases where both 
rules were true, of which 7 or 87.5 % for which summer rainfall 
was higher than the average. In future cases where both rules are 
true, the probability that this corresponds with a summer 
rainfall higher than 336 mm will be estimated as 0.83. 
Good rules for insolation (target : insolation > 0) appears to 
be «tree2 >= -0.3563512) <= (treeS < tree4», (98.25 10 0 0 
6) and «tree14 >= 0.7885"853) <> (tree3 <= -0.3459500», (98.25 
1000 6). 
To understand such rules it is important to know that BEAGLE is 
able to intermix numerical and logical values. If it needs a 
logical value but is given a numeric one, it evaluates as 
follows: x > 0 corresponds to 'true', x <= 0 corresponds to 
'false', 'true' corresponds to 1.0 and 'false' corresponds to 
0.0. 

with an input of a numeric target expression 
«( tree12 & tree13) & ( tree14 & tree15» - 0.0000)$, it 
is possible to find out which meteorological variables or which 
combination of meteorological variables are decisive for a 
prediction of the radius increment of the poplar trees, growing 
in a wide planting pattern. This is expressed in following 
signature table ": 
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! « 
$ 

amount of sunshine > 
501 

-0.3307000) 
10 

temperature) 

() $ from stanmete.dat on 25/01/1991 at 20:30:55 

00 
01 

0.3750 16 
1.0000 11 
5.0000 5 

0.1146 
0.8958 

0.0909 
1.0000 

The "!"-mark expresses a logical negation (NOT), the "i"-mark a 
logical disjunction (OR). From this rule it is possible to 
conclude that poplar trees in thin stands (planting distance 
higher than 6 m) show strong signals for lower summer 
temperatures. The evapotranspiration process might be the growth
limiting factor for these seventeen year old trees. This is an 
affirmation of an inference based on a redundancy analysis of the 
same data (Beeckman, 1991). 
The meteorological signal of the other trees, growing in denser 
circumstances, is different, but no high quality rule which makes 
sense could be found. 

with target expressions concerning the maximum growth area it can 
be affirmed, without plotting graphs or processing growth 
functions, thai poplar trees in narrow planting patterns grow 
relatively fast the first years after planting, but the growth 
is slowed down after a couple of years. From that moment relative 
growth of trees from thinner stands shows a take-off phase. 
For instance, a target expression (maximum growing area < 10 m2) 
generates high quality rules (ring width 1978 <= ring width 1976) 
and (0,55 >= ring width 1981) or a target expression (maximum 
growing area > 20 m2), gives (ring width 1975 <= ring width 
1982) • 

Discrimination 

Based on a t-statistic the hypothesis that there is no general 
difference between stern diameters of UNAL trees and BEAUPRE trees 
of the Kaulille experimental field can't be rejected, at alpha 
= 0.05. Nevertheless, it is possible to discriminate among the 
two clones with some high quality rules combining the character 
variables "circle" and "year", as is illustrated by the output 
of a BEAGLE-session, with the target expression: 
( UNAL < BEAUPRE). 
$ 
Ouput from HERB : 

« year <= 1984.0000) <= ( circle> ( year - 1975.0000») 
$ 86.50 66 1 2 15. 

output from STEM : 

« year <= 1984.0000) 
$ 66 
() $ 

o 
1 

1 2 
from diarnka.dat 
0.0000 84 
2.0000 17 

66.0000 67 

<= ( circle> ( year - 1975.0000») 
15 

on 22/01/1991 at 14:42:01 

0.1111 
0.9706 

11. 7647 
98.5075 

Simple statistics on data-set -- diarnka.dat 



Variable 
1 
2 
3 
4 

circle 
year 
UNAL 

BEAUPRE 

Number of samples = 
Mean target value = 
Date : 22/01/1991 

100 

min. 
1. 0000 

1981. 0000 
43.2963 
50.1111 

84 
0.8095 

mean 
6.9524 

1985.2857 
169.4576 
179.2828 

max. 
13.0000 

1989.0000 
300.5380 
335.3330 

C 
C 
N 
N 

20 % of the cases are saved in a test data set, to evaluate the 
rules by the LEAF-module. The LEAF report, sorted on estimated 
values of the target expression, is like this 

Rank Actual Estimate Circle year 
1 1. 00 0.9706 + 8 1982 
2 1. 00 0.9706 + 10 1982 
3 1. 00 0.9706 + 11 1982 
4 1. 00 0.9706 + 10 1984 
5 1. 00 0.9706 + 2 1985 
6 1. 00 0.9706 + 9 1986 
7 1. 00 0.9706 + 6 1987 
8 1. 00 0.9706 + 9 1987 
9 1. 00 0.9706 + 10 1987 

10 1. 00 0.9706 + 12 1987 
11 1. 00 0.9706 + 2 1988 
12 1. 00 0.9706 + 8 1988 
13 1.00 0.9706 + 11 1988 
14 1. 00 0.9706 + 1 1989 
15 1. 00 0.9706 + 13 1989 
16 0.00 0.1111 + 2 1981 
17 0000 0.1111 + 2 1982 
18 0.00 0.1111 + 4 1982 
19 0.00 0.1111 + 6 1982 
20 0.00 0.1111 + 8 1984 

Crude success rate: 100.0000% 
Mean target value = 0.7500 

Success rate in non-queried groups = 
Av. target value for all-YES group = 
Av. target value for All-NO group = 

99.9999% [20 cases]. 
1.0000 [15 cases]. 
0.0000 [5 cases]. 

Data-file was 
Rule-file was 

diamka.tst 
diamka.rrr 

Rule-set being used (with logical Target Expression): 

--> ( UNAL < BEAUPRE) 

Rule No. 1 
({ year <= 1984.0000) <= { circle> ( year -
KEY: 

1975.0000») 

?? queries an estimate based on a small signature 
group, based on less than 15 examples. 

+ indicates a "correct" decision : 
i.e. estimate >= 0.5 and TRUE target; 
or estimate < 0.5 and FALSE target. 



HEADINGS: 
------------------

RANK 
ACTUAL 
ESTIMATE 
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Ranking sorted by Beagle estimate. 
Actual value of target expression. 
Beagle's estimate of the target value, 
derived from the signature table. 

From the rule it can be concluded ,that UNAL-trees are smaller 
than BEAUPRE-trees in following cases : up to and including 1984 
(first part of the rule true or = 1), when the number of the 
circle is bigger than (year - 1975) (second part of the rule true 
or =1) ; and from 1985 onwards for all the circles. 
DISCUSSION 

BEAGLE gives evidence to be a very interesting software package 
with which it is possible to process ecological data. It is 
especially useful in data set,s where the concepts time and 
complexity are involved, like in dendrochronology. It is 
laborious and in many cases impossible to handle such datasets 
with traditional packages, all the more because of a priori 
assumptions which should be fulfilled, the difficulties with the 
evaluation of the significance, the lack of detailed 
descriptions, the difficulties to interpret the output, ... 
BEAGLE at the other hand is easy to use, does what it claims and 
is really quit inexpensive (Rowley, 1990). Anyone who suspects 
that their data may just contain some interesting rules would be 
well advised to spend an hour or two letting PC/BEAGLE run 
through the data. Nevertheless, PC/BEAGLE rules should never be 
blindly accepted, at the very least the rules produced should 
help in understanding the data. Perhaps the most difficult part 
is interpreting these rules and attempting to work out whether 
they make sense and are in the line of the user's expectations. 
This is not particularly a problem relating to the package. It 
is simply the difficulty of understanding a mixture of parametric 
and non-parametric statistics with some Bayesian statistics 
thrown in too. 
A minor disadvantage is that the output files don't include the 
warnings like 'too few variables to analyse' or 'not enough 
samples' . 
Anyhow it was possible to work out some valuable rules to predict 
poplar tree-ring widths from meteorological variables or to 
discriminate among Beaupre and Unal. 
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